Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T16:33:15.168Z Has data issue: false hasContentIssue false

13C NMR Chemical Shifts of Oriented Cesium-Graphite Intercalation Compounds

Published online by Cambridge University Press:  15 February 2011

D.D. Dominguez
Affiliation:
Naval Research Laboratory, Code 6120, Washington, Dc 20375, USA
H.A. Resing
Affiliation:
Naval Research Laboratory, Code 6120, Washington, Dc 20375, USA
C.F. Poranski Jr
Affiliation:
Naval Research Laboratory, Code 6120, Washington, Dc 20375, USA
J.S. Murday
Affiliation:
Naval Research Laboratory, Code 6120, Washington, Dc 20375, USA
Get access

Abstract

The 13C NMR lines of the stage I cesium graphite compound are broad (ca. 600 Hz) at all orientations, reflecting immobile Cs intercalation; in terms of an axial pattern the principal values are δ11 = 95 ± 5 and δ┴6 = 130 ± 6 ppm. For third and fourth stage compounds the bounding layers give a relatively sharp (60–100 Hz) pair of lines at all orientations, thus demonstrating axially symmetric shift tensors: δ11 = 66 and 56 ppm; δ┴ = 159 and 149 ppm, respectively. These well defined axial tensors reflect atomic motions in the incommensurate Cs layer; the pair of lines may arise from the two classes of carbons - those above carbons in a subsequent layer and those above hexagon centers. Lines of inner layers are sharpest for special orientations →c II →B0 and →c ┴ →B0.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Conard, J., Lauginie, P., Estrade-Szwarckopf, H., Hermann, G., Guérard, D., and Lagrauge, P., Physica 105B, 285 (1981).Google Scholar
2. Conard, J., Estrade-Szwarckopf, H., Lauginie, P., and Hermann, G., Solid State Sci. 38, 264 (1981).Google Scholar
3. Estrade-Szwarckopf, H., Conard, J., Lauginie, P., Van der Klink, G., Guérard, D., Lagrange, P., Solid State Sci. 38, 264 (1981).Google Scholar
4. Conard, J., Estrade, H., Lauginie, P., Fuzellier, H., Furdin, G., and Vasse, R., Physica, 99B, 521 (1980).Google Scholar
5. Nixon, D.E., 1966, Ph.D. Thesis, Imperial College, London.Google Scholar
6. Nye, J.F., “Physical Properties of Crystals”, Oxford, 1957.Google Scholar
7. Van Vleck, I.H., Phys. Rev. 74, 1168 (1948).CrossRefGoogle Scholar
7a More useable equations in Carrington, A., and McLachlan, A. D., “Introduction to Magnetic Resonance” Harper and Row, New York, 1967, p. 34.Google Scholar
8. Clarke, R., Casewell, N. and Solin, S.A., Phys. Rev. Lett. 42, 61 (1979).CrossRefGoogle Scholar
9. Resing, H.A., J. Chem. Phys. 37, 2575 (1962),CrossRefGoogle Scholar
9a Mod. Cryst. and Liq. Cryst. 9, 101 (1969).Google Scholar
10. Note difficulties experienced in ref. [1, 2, and 4].Google Scholar
11. Only 13C powder spectra for C8K [2] and C8Rb [1] are shown. That for C8Cs is summarized only in a table [1] and the text.Google Scholar
12. Bloembergen, N., Purcell, B. M. and Pound, R. V., Phys. Rev. 73, 679 (1948).CrossRefGoogle Scholar
13. Pople, J. A., Mol. Phys., 168 (1958).Google Scholar
14. Clarke, R., Caswell, N., Solin, S. A., and Horn, P. M., Physics 99B, 457 (1980).Google Scholar
15. But see triplet in δ11 for stage V HNO3, previous paper of this Symposium.Google Scholar