Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T22:42:52.738Z Has data issue: false hasContentIssue false

1.37 - 2.90 Micron Intersubband Transitions in GaN/AlN Superlattices

Published online by Cambridge University Press:  01 February 2011

Eric Anthony DeCuir Jr.
Affiliation:
[email protected], University of Arkansas, Electrical Engineering and Microelectronics and Photonics, 3217 Bell Engineering Center, Fayetteville, AR, 72701, United States
Emil Fred
Affiliation:
[email protected], University of Arkansas, Department of Electrical Engineering, 3217 Bell Engineering Center, Fayetteville, AR, 72701, United States
Omar Manasreh
Affiliation:
[email protected], University of Arkansas, Department of Electrical Engineering, 3217 Bell Engineering Center, Fayetteville, AR, 72701, United States
Jinqiao Xie
Affiliation:
[email protected], Virginia Commonwealth University, Department of Electrical Engineering and Physics Department, Richmond, VA, 23284, United States
Hadis Morkoc
Affiliation:
[email protected], Virginia Commonwealth University, Department of Electrical Engineering and Physics Department, Richmond, VA, 23284, United States
Esther Baumann
Affiliation:
[email protected], University of Neuchatel, Institute of Physics, A.-L Breguet, Neuchatel, 2000, Switzerland
Daniel Hofstetter
Affiliation:
[email protected], University of Neuchatel, Institute of Physics, A.-L Breguet, Neuchatel, 2000, Switzerland
Get access

Abstract

Intersubband transitions in the spectral range of 1.37-2.90 °Cm is observed in molecular beam epitaxy grown Si-doped GaN/AlN multiple quantum wells using a Fourier-transform spectroscopy technique. A blue shift in the peak position of the intersubband transition is observed as the well width is decreased. A sample with a well width in the order of 2.4 nm exhibited the presence of three bound states in the GaN well. The bound state energy levels are calculated using a transfer matrix method. An electrochemical capacitance voltage technique is used to obtain the three dimensional carrier concentrations in these samples which further enable the calculation of the Fermi energy level position. Devices fabricated from these GaN/AlN quantum wells are found to operate in the photovoltaic mode.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Hofstetter, D., Baumann, E., Giorgetta, F. R., Graf, M., Maier, M., Guillot, F., Bellet-Amalric, E., and Monroy, E., Appl. Phys. Lett. 88, 121112 (2006).Google Scholar
[2] Gulliot, F., Bellet-Amalric, E., Tcherncheva, M., Nevou, L., Doyennette, L., Julien, F.H., Dang, Le Si, Remmele, T., Albrecht, M., Shibata, T., Tanaka, M., J. Appl. Phys. 100, 044326 (2006).Google Scholar
[3] Baumann, E., Giorgetta, F. R., Hofstetter, D., Lu, H., Chen, X., Schaff, W. J., Eastman, L. F., Golka, S., Schrenk, W., and Strasser, G., Appl. Phys. Lett. 87, 191102 (2005).Google Scholar
[4] Ridley, B. K., Schaff, W. J., and Eastman, L. F., J. Appl. Phys. 94, 3972 (2003).Google Scholar
[5] Suzuki, N., Iizuka, N., and Kaneko, K., Jpn. J. Appl. Phys., Part 1 42, 132 (2003).Google Scholar
[6] III-Nitride Semiconductor Growth, edited by Manasreh, M. O. and Ferguson, I. T. (Taylor & Francis, New York, 2003), Vol.19, p. 1.Google Scholar
[7] Morkoç, Hadis, Nitride Semiconductors and Devices, 2nd ed. (Elsevier, New York, 2006), Chap. 1, p. 1.Google Scholar
[8] Walle, C. G. Van de and Neugebauer, J., J. Crystal Growth 189/190, 505 (1996).Google Scholar
[9] Iizuka, N., Kaneko, K., and Suzuki, N., J. Appl. Phys. 99, 09317 (2006).Google Scholar
[10] Baumann, E., Giorgetta, F. R., Hofstetter, D., Lu, H., Chen, X., Schaff, W. J., Eastman, L. F., and Kirste, L., Appl. Phys. Lett. 86, 032110 (2005).Google Scholar
[11] Nakamura, S., Jpn. J. Appl. Phys. 30, L1705 (1991).Google Scholar
[12] Amano, H., Sawaki, N., Akasaki, I., and Toyoda, Y., Appl. Phys. Lett. 48(5), 353 (1986).Google Scholar
[13] Levi, A. F. J., Applied Quantum Mechanics (Cambridge University Press, Cambridge, 2003), Chap. 4, p. 167.Google Scholar