Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-09T16:00:18.247Z Has data issue: false hasContentIssue false

121Sb MöSsbauer Studies of Graphite–SbF5 Intercalation Compounds

Published online by Cambridge University Press:  15 February 2011

D. H. Mcdaniel
Affiliation:
University Of Cincinnati, Cincinnati, OH 45221, USA
P. Boolchand
Affiliation:
University Of Cincinnati, Cincinnati, OH 45221, USA
W. J. Bresser
Affiliation:
University Of Cincinnati, Cincinnati, OH 45221, USA
P. C. Eklund
Affiliation:
University of Kentucky, Lexington, KY 40506, USA
Get access

Abstract

Stage 2 samples of graphite-SbF5 intercalVtion compounds were prepared by reacting SbF5 with HOPG at 200°C for 5 days. 121Sb Mössbauer spectra taken at 4.2K reveal an intense and narrow feature in the Sb(5+) region and a weak and broad feature in the Sb(3+) region. Interpretation of these data in terms of possible Sb(5+) and Sb(3+) intercalant species is discussed in connection with chemical aspects of intercalation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Selig, H. and Ebert, L. B., Adv. Inorg. Radiochem. 23, 281 (1980).Google Scholar
2. Ebert, L. B., Huggins, R. A., and Brauman, J. I., J. Chem. Soc. Chem. Commun. 1973, 815.Google Scholar
3. Resing, H. A., Vogel, F. L. and Wu, T. C., Mater. Sci. Eng. 41, ll3 (1979).CrossRefGoogle Scholar
4. Ballard, J. G. and Birchall, T., J. Chem. Soc. Dalton 1976, 1859.Google Scholar
5. Forsman, W. G., Carl, D. E. and Birchall, T., Extended Abstracts, 15th Biennial Conference on Carbon 1981, 353.Google Scholar
6. Moran, M. J., Fischer, J. E. and Salaneck, W. R., J. Chem. Phys. 73, 629 (1980).Google Scholar
7. Timp, G., Dresselhaus, M.S., Salamanca-Riba, L., Erbil, A., Hobbs, L.W., Dresselhaus, G., Eklund, P.C. and Iye, Y., Phys. Rev B26, 2323 (1982).CrossRefGoogle Scholar
8. Thompson, T. E., Falardeau, E. R. and Hanlon, L. R., Carbon 15, 39 (1977).CrossRefGoogle Scholar
9. Eklund, P. C., Smith, D. S. and Murthy, V. K. R., Syn. Metals 3, 111 (1981).Google Scholar
10. Wu, T. C., Vogel, F. L., Pendrys, L. A. and Zeller, C., Mater. Sci. Eng. 47, 161 (1981).Google Scholar
11. Murthy, V. K. R., Smith, D. S. and Eklund, P. C., Mater. Sci. Eng. 45, 77 (1980).CrossRefGoogle Scholar
12. Streifinger, L., Boehm, H. P., Schlögl, R. and Pentenrieder, R., Carbon 17, 195 (1979).Google Scholar
13. Wortmann, G., Persheid, B., Godler, F., Kaindl, G. and Schlögl, R., Carbon and Graphite Conference (London 1982.Google Scholar
14. Boolchand, P., Bresser, W. J., McDaniel, D., Sisson, K., Yeh, V. and Eklund, P. C., Solid State Commun. 40, 1049 (1981).Google Scholar
15. Bowen, L. H., Mössbauer Effect Data Index (Edited by Stevens, J. G. and Stevens, V. E.), p. 71, Plenum, New York (1972).Google Scholar
16. Cotten, F. A. and Wilkinson, G., Advanced Inorganic Chemistry, p. 448, Wiley, New York (1980).Google Scholar
17. Friedt, J. M., Shenoy, G. K. and Burgard, M., J. Chem. Phys. 59, 4468, (1973).Google Scholar
18. Laali, H., Muller, M. and Sommer, J., J. C. S. Chem. Commun. 1980, 1088.CrossRefGoogle Scholar
19. Yoneda, N., Fukuhara, T., Abe, T., Suzuki, A. and Kudo, K., Chem. Soc. Japan Chem. Lettr. 1981, 1485.Google Scholar
20. McDaniel, D. H. “Stabilizing Effects of Large Counter-Ions’, in Annual Reports in Inorganic and General Syntheses, 1972 (Edited by Niedenzu, K. and Zimmer, H.), p. 293, Academic Press, New York 1973).Google Scholar
21. Ebert, L. B., Mills, D. R., Scanlon, J. C. and Selig, H., Mat. Res. Bull. 16, 831 (1981).CrossRefGoogle Scholar
22. Sisson, K. J. and Boolchand, P., Nucl. Instru. Methods 198, 317 (1982).Google Scholar
23. Eklund, P. C., Giergiel, J. and Boolchand, P., Physics of Intercalation Compounds, 38, 168 (1981), Springer Verlag, New York.CrossRefGoogle Scholar