Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T08:56:51.032Z Has data issue: false hasContentIssue false

Liquid-state pyroelectric energy harvesting

Published online by Cambridge University Press:  19 November 2020

M. Bevione
Affiliation:
Istituto Italiano di Tecnologia, Center for Sustainable Future Technologies, Via Livorno 60, Torino10144, Italy
E. Garofalo
Affiliation:
Istituto Italiano di Tecnologia, Center for Sustainable Future Technologies, Via Livorno 60, Torino10144, Italy Department of Electronics, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino10129, Italy
L. Cecchini
Affiliation:
Istituto Italiano di Tecnologia, Center for Sustainable Future Technologies, Via Livorno 60, Torino10144, Italy Department of Electronics, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino10129, Italy
A. Chiolerio*
Affiliation:
Istituto Italiano di Tecnologia, Center for Sustainable Future Technologies, Via Livorno 60, Torino10144, Italy
*
Address all correspondence to A. Chiolerio at [email protected]
Get access

Abstract

A liquid-state pyroelectric energy harvester is described and a remarkable capacity to convert a thermal gradient into electrical energy is demonstrated.

Increasing the sustainability of energy generation can be pursued by harvesting extremely low enthalpy sources: low temperature differences between cold and hot reservoirs are easily achieved in every industrial process, both at large and small scales, in plants as well as in small appliances, vehicles, natural environments, and human bodies. This paper presents the assessment and efficiency estimate of a liquid-state pyroelectric energy harvester, based on a colloid containing barium titanate nanoparticles and ferrofluid as a stabilizer. The liquid is set in motion by an external pump to control velocity, in a range similar to the one achieved by Rayleigh–Bénard convection, and the colloid reservoir is heated. The colloid is injected into a Fluorinated Ethylene Propylene pipe where titanium electrodes are placed to collect electrical charges generated by pyroelectricity on the surface of the nanoparticles, reaching 22.4% of the ideal Carnot efficiency of a thermal machine working on the same temperature drop. The maximum extracted electrical power per unit of volume is above 7 mW/m3 with a ΔT between electrodes of 3.9 K.

Type
Original Research
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

International Energy Agency: World Energy Outlook 2019 (EIA GOV, 2019), Washington, DC.Google Scholar
British Petroleum Company: BP Statistical Review of World Energy, 68th ed. (British Petroleum Co., 2019), London.Google Scholar
Forman, C., Muritala, I.K., Pardemann, R., and Meyer, B.: Estimating the global waste heat potential. Renew. Sustain. Energy Rev. 57, 15681579 (2016).CrossRefGoogle Scholar
Park, C., Lee, H., Hwang, Y., and Radermacher, R.: Recent advances in vapor compression cycle technologies. Int. J. Refrig. 60, 118134 (2015).CrossRefGoogle Scholar
Elsheniti, M.B., Elsamni, O.A., Al-dadah, R.K., Mahmoud, S., Elsayed, E., and Saleh, K.: Adsorption refrigeration technologies. Sustain. Air Cond. Syst., 7194 (2018).Google Scholar
Zhang, X., He, M., and Zhang, Y.: A review of research on the Kalina cycle. Renew. Sustain. Energy Rev. 16, 53095318 (2012).10.1016/j.rser.2012.05.040CrossRefGoogle Scholar
Yamamoto, T., Furuhata, T., Arai, N., and Mori, K.: Design and testing of the organic rankine cycle. Energy 26, 239251 (2001).CrossRefGoogle Scholar
Garofalo, E., Bevione, M., Cecchini, L., Matiussi, F., and Chiolerio, A.: Waste heat to power: Technologies, current applications and future potential.Energy Technology (inpress). https://doi.org/10.1002/ente.202000413.Google Scholar
Torfs, T., Leonov, V., and Hoof, C.V.. Body-Heat Powered Autonomous Pulse Oximeter, 5th IEEE Conference on Sensors (2006); pp. 22–25.Google Scholar
Leonov, V.: Simulation of maximum power in the wearable thermoelectric generator with a small thermop. Microsyst. Technol. 17, 495504 (2011).10.1007/s00542-011-1262-6CrossRefGoogle Scholar
Leonov, V.: Thermoelectric energy harvesting of human body heat for wearable sensors. In IEEE Sensors Journal, Vol. 13 (2013); pp. 22842291.CrossRefGoogle Scholar
Leonov, V., Torfs, T., Fiorini, P., and Hoof, C.V.: Thermoelectric converters of human warmth for self-powered wireless sensor nodes. In IEEE SENSORS JOURNAL Vol. 7 (2007); pp. 650657.CrossRefGoogle Scholar
Xue, H., Yang, Q., Wang, D., Luo, W., Wang, W., Lin, M., Liang, D., and Luo, Q.: A wearable pyroelectric nanogenerator and self-powered breathing sensor. Nano Energy 38, 147154 (2017).CrossRefGoogle Scholar
Ryu, H. and Kim, S.-W.: Emerging pyroelectric nanogenerators to convert thermal energy into electrical energy. Small 1903469, 121 (2019).Google Scholar
Chiolerio, A., Garofalo, E.,Bevione M., and Cecchini, L.: Dispositivo per la conversione di energia termica in energia elettrica. Italian patent application (27/07/2020) n. IT 102020000018097.Google Scholar
Garofalo, E., CecchiniL., Bevione M., Chiolerio A.: Triboelectric characterization of colloidal TiO2 for energy harvesting applications. MDPI 10(6), 1181 (2020). doi:10.3390/nano10061181.Google ScholarPubMed
Chiolerio, A. and Quadrelli, M.B.: Colloidal stems. Energy Technol. 7, 130 (2019).CrossRefGoogle Scholar
Isse, A.: Crystal Hybridized Pyro-Piezoelectric Ferrofluidic Harvester. Available at: https://arxiv.org/ftp/arxiv/papers/1809/1809.09694.pdf (accessed September 2020).Google Scholar
Jin, L., Zhang, Y., Yu, Y., Chen, Z., Li, Y., Cao, M., Che, Y., and Yao, J.: Self-powered colloidal wurtzite-structure quantum dots photodetectors based on photoinduced-pyroelectric effect. Adv. Opt. Mater. 1800639, 18 (2018).Google Scholar
Materials, I.A.: Barium titanate (barium titanium oxide, BaTiO3) powder. Adv. Mater., Available at: http://www.advancedmaterials.us/5622-ON4.htm (Accessed October 2020)Google Scholar
Hughes, A.: The Einstein relation between relative viscosity and volume concentration of suspensions of spheres. Nature 173, 10891090 (1954).CrossRefGoogle Scholar
Angaitkar, J.N. and Shende, D.A.T.: Temperature dependent dynamic (absolute) scosity of Oil. Int. J. Eng. Innovative Technol. 3, 449454 (2008).Google Scholar
Harms, T.M., Jog, M.A., and Manglik, R.M.: Effects of temperature dependent viscosity variations and boundary conditions on fully developed laminar forced convection in a semicircular duct. J. Heat Transfer 120, 600604 (1998).CrossRefGoogle Scholar
Lang, S.B.: Sourcebook of pyroelectricity (Gordon and Breach Science Publishers, 1974), London.Google Scholar
Srinivasan, M.: Pyroelectric materials. Bull. Mater. Sci. 6, 317325 (1984).CrossRefGoogle Scholar
Jachalke, S., Mehner, E., Stöcker, H., Hanzig, J., Sonntag, M., Weigel, T., Leisegang, T., and Meyer, D.: How to measure the pyroelectric coefficient. Appl. Phys. Rev. 021303, 4 (2017).CrossRefGoogle Scholar
Xie, J.: Experimental and Numerical Investigation on Pyroelectric Energy Scavenging (Virginia Commonwealth University, Virginia Commonwealth, Richmond, 2007).Google Scholar
Ghaednia, H. and Jackson, R.L.: The effect of nanoparticles on the real area of contact, friction and wear. J. Tribol. 135, 110 (2013).CrossRefGoogle Scholar
Wadwalkar, S.S., Jackson, R.L., and Kogut, L.: A study of the elastic-plastic deformation of heavily deformed spherical contacts. J. Eng. Tribol. 224, 10911102 (2010).Google Scholar
Jackson, R.L. and Green, I.: A finite element study of elasto-plastic hemispherical contact against a rigid flat. J. Tribol. 127, 343354 (2005).CrossRefGoogle Scholar
Trzepiecinski, T. and Gromada, M.: Characterization of mechanical properties of barium titanate ceramics with different grain sizes. Mater. Sci.- Pol. 36, 151156 (2018).CrossRefGoogle Scholar
Cheng, B.L., Gabbay, M., Duffy, W., and Fantozzi, G.: Mechanical loss and Young's modulus associated with phase transitions in barium titanate based ceramics. J. Mater. Sci. 36, 49514955 (1996).CrossRefGoogle Scholar
Yuan, X. and Yang, F.: Energy transfer in pyroelectric material .In Heat Conduction: Basic Research, Vikhrenko, V.S., ed. (InTech, Croatia, 2011), pp. 229248.Google Scholar
Ertuğ, B.: The overview of the electrical properties of barium titanate. Am. J. Eng. Res. 2, 17 (2013).Google Scholar
Hemrajani, R.R. and Tatterson, G.B.: Mechanically stirred vessels .In Handbook of Industrial Mixing: Science and Practice, Chapter 6, Paul, E.L., Atiemo-Obeng, V.A. and Kresta, S.M., eds. (John Wiley & Sons, Inc., 2003), pp. 345390.CrossRefGoogle Scholar
Buongiorno, J.: Convective transport in nanofluids. J. Heat Transfer 128, 240250 (2006).CrossRefGoogle Scholar
Mousavi, N.S. and Kumar, S.: Effective heat capacity of ferrofluids e Analytical approach. Int. J. Therm. Sci. 84, 267274 (2014).CrossRefGoogle Scholar