Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T05:36:33.197Z Has data issue: false hasContentIssue false

Enabling sustainable critical materials for battery storage through efficient recycling and improved design: A perspective

Published online by Cambridge University Press:  09 September 2020

Darren H. S. Tan
Affiliation:
Department of NanoEngineering, University of California San Diego, La Jolla, CA92093, USA
Panpan Xu
Affiliation:
Department of NanoEngineering, University of California San Diego, La Jolla, CA92093, USA
Zheng Chen*
Affiliation:
Department of NanoEngineering, University of California San Diego, La Jolla, CA92093, USA Sustainable Power & Energy Center (SPEC), University of California San Diego, La Jolla, CA92093, USA Program of Chemical Engineering, University of California San Diego, La Jolla, CA92093, USA
*
Address all correspondence to Zheng Chen at [email protected]
Get access

Abstract

A perspective on the current state of battery recycling and future improved designs to promote sustainable, safe, and economically viable battery recycling strategies for sustainable energy storage.

Recent years have seen the rapid growth in lithium-ion battery (LIB) production to serve emerging markets in electric vehicles and grid storage. As large volumes of these batteries reach their end of life, the need for sustainable battery recycling and recovery of critical materials is a matter of utmost importance. Global reserves for critical LIB elements such as lithium, cobalt, and nickel will soon be outstripped by growing cumulative demands. Despite advances in conventional recycling strategies such as pyrometallurgy and hydrometallurgy, they still face limitations in high energy consumption, high greenhouse gas emissions, as well as limited profitability. While new direct recycling methods are promising, they also face obstacles such as the lack of proper battery labeling, logistical challenges of inefficient spent battery collection, and components separation. Here, we discuss the importance of recovering critical materials, and how battery designs can be improved from the cell to module level in order to facilitate recyclability. The economic and environmental implications of various recycling approaches are analyzed, along with policy suggestions to develop a dedicated battery recycling infrastructure. We also discuss promising battery recycling strategies and how these can be applied to existing and future new battery chemistries.

Type
Perspective
Copyright
Copyright © The Author, 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The authors Darren H.S. Tan and Panpan Xu contributed equally to the work.

References

Li, L., Zhang, X., Li, M., Chen, R., Wu, F., Amine, K., and Lu, J.: The recycling of spent lithium-ion batteries: A review of current processes and technologies. Electrochem. Energy Rev. 1, 461482 (2018).CrossRefGoogle Scholar
Lv, W., Wang, Z., Cao, H., Sun, Y., Zhang, Y., and Sun, Z.: A critical review and analysis on the recycling of spent lithium-ion batteries. ACS Sustain. Chem. Eng. 6, 15041521 (2018).CrossRefGoogle Scholar
Fan, E., Li, L., Wang, Z., Lin, J., Huang, Y., Yao, Y., Chen, R., and Wu, F.: Sustainable recycling technology for Li-ion batteries and beyond: Challenges and future prospects. Chem Rev. 120(14), 70207063 (2020).CrossRefGoogle ScholarPubMed
Scerra, M.: Lithium-ion battery pack costs worldwide between 2011 and 2020. Available at: https://www.statista.com/statistics/883118/global-lithium-ion-battery-pack-costs/ (accessed June 25, 2020).Google Scholar
Harper, G., Sommerville, R., Kendrick, E., Driscoll, L., Slater, P., Stolkin, R., Walton, A., Christensen, P., Heidrich, O., Lambert, S., Abbott, A., Ryder, K., Gaines, L., and Anderson, P.: Recycling lithium-ion batteries from electric vehicles. Nature 575, 7586 (2019).CrossRefGoogle ScholarPubMed
Zhang, X., Li, L., Fan, E., Xue, Q., Bian, Y., Wu, F., and Chen, R.: Toward sustainable and systematic recycling of spent rechargeable batteries. Chem. Soc. Rev. 47, 72397302 (2018).CrossRefGoogle ScholarPubMed
The European Parliament and the Council of the European Union and Brussels, B.: Directive 2006/66/EC on Batteries and Accumulators and Waste Batteries and Accumulators. Vol. L 266/1. (Europa, 2006).Google Scholar
Hongyu, B.: China building traction battery recycling system as NEV develops fast. Available at: http://en.people.cn/n3/2019/0228/c90000-9550975.html (accessed June 21, 2020).Google Scholar
Spangenberger, J.: Novel processing and design technologies will make battery recycling profitable. Available at: https://www.anl.gov/sites/www/files/2019-02/ReCell_FS.pdf (accessed June 21, 2020).Google Scholar
Gil-Alana, L.A. and Monge, M.: Lithium: Production and estimated consumption. Evidence of persistence. Resour. Policy 60, 198202 (2019).CrossRefGoogle Scholar
Chen, M., Ma, X., Chen, B., Arsenault, R., Karlson, P., Simon, N., and Wang, Y.: Recycling end-of-life electric vehicle lithium-ion batteries. Joule 3, 26222646 (2019).CrossRefGoogle Scholar
Shengo, M.L., Kime, M.B., Mambwe, M.P., and Nyembo, T.K.: A review of the beneficiation of copper-cobalt-bearing minerals in the Democratic Republic of Congo. J. Sustain. Min. 18, 226246 (2019).CrossRefGoogle Scholar
Campbell, G.A.: The cobalt market revisited. Miner. Econ. 33, 2128 (2019).CrossRefGoogle Scholar
Or, T., Gourley, S.W.D., Kaliyappan, K., Yu, A., and Chen, Z.: Recycling of mixed cathode lithium-ion batteries for electric vehicles: Current status and future outlook. Carbon Energy 2, 643 (2020).CrossRefGoogle Scholar
FY2020: AMO Critical Materials FOA: Next-Generation Technologies and Field Validation. Energy, O. o. E. E. a. R., Ed. (Department of Energy, 2020).Google Scholar
Habib, K., Hansdóttir, S.T., and Habib, H.: Critical metals for electromobility: Global demand scenarios for passenger vehicles, 2015–2050. Resour. Conserv. Recycl. 154, 104603 (2020).CrossRefGoogle Scholar
End in Sight to Near-Term Lithium Supply Shortages. Available at: https://about.bnef.com/blog/end-sight-near-term-lithium-supply-shortages/ (accessed August 2, 2020).Google Scholar
Sharma, Y.: Electric vehicles’ lithium-battery policy to incentivise recycling entities. Available at: https://economictimes.indiatimes.com/industry/auto/auto-news/electric-vehicles-lithium-battery-policy-to-incentivise-recycling-entities/articleshow/71497181.cms?from=mdr (accessed June 28, 2020).Google Scholar
Energy Department Announces Battery Recycling Prize and Battery Recycling R&D Center. Available at: https://www.energy.gov/articles/energy-department-announces-battery-recycling-prize-and-battery-recycling-rd-center (accessed June 28, 2020).Google Scholar
Hancock, L., Ralph, N., and Ali, S.H.: Bolivia's lithium frontier: Can public private partnerships deliver a minerals boom for sustainable development? J. Cleaner Prod. 178, 551560 (2018).CrossRefGoogle Scholar
Banza Lubaba Nkulu, C., Casas, L., Haufroid, V., De Putter, T., Saenen, N.D., Kayembe-Kitenge, T., Musa Obadia, P., Kyanika Wa Mukoma, D., Lunda Ilunga, J.M., Nawrot, T.S., Luboya Numbi, O., Smolders, E., and Nemery, B.: Sustainability of artisanal mining of cobalt in DR Congo. Nat. Sustain. 1, 495504 (2018).CrossRefGoogle ScholarPubMed
Song, Z., Hofmann, H., Li, J., Han, X., and Ouyang, M.: Optimization for a hybrid energy storage system in electric vehicles using dynamic programing approach. Appl. Energy 139, 151162 (2015).CrossRefGoogle Scholar
Song, Z., Feng, S., Zhang, L., Hu, Z., Hu, X., and Yao, R.: Economy analysis of second-life battery in wind power systems considering battery degradation in dynamic processes: Real case scenarios. Appl. Energy 251 (2019).CrossRefGoogle Scholar
Mace, M.: In practice: Amsterdam ArenA's EV battery storage system. Available at: https://www.edie.net/library/In-practice–Amsterdam-ArenA-s-EV-battery-storage-system/6788 (accessed June 21, 2020).Google Scholar
Jiao, N.: China Tower can ‘absorb’ 2 million retired electric vehicle batteries. Available at: https://www.idtechex.com/en/research-article/china-tower-can-absorb-2-million-retired-electric-vehicle-batteries/15460 (accessed June 21, 2020).Google Scholar
Casals, L.C., Amante Garcia, B., and Canal, C.: Second life batteries lifespan: Rest of useful life and environmental analysis. J. Environ. Manage. 232, 354363 (2019).CrossRefGoogle ScholarPubMed
Hossain, E., Murtaugh, D., Mody, J., Faruque, H.M.R., Haque Sunny, M.S., and Mohammad, N.: A comprehensive review on second-life batteries: Current state, manufacturing considerations, applications, impacts, barriers & potential solutions, business strategies, and policies. IEEE Access 7, 7321573252 (2019).CrossRefGoogle Scholar
Huang, B., Pan, Z., Su, X., and An, L.: Recycling of lithium-ion batteries: Recent advances and perspectives. J. Power Sources 399, 274286 (2018).CrossRefGoogle Scholar
Schmuch, R., Wagner, R., Hörpel, G., Placke, T., and Winter, M.: Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3, 267278 (2018).CrossRefGoogle Scholar
Xiao, J., Li, J., and Xu, Z.: Novel approach for in situ recovery of lithium carbonate from spent lithium ion batteries using vacuum metallurgy. Environ. Sci. Technol. 51, 1196011966 (2017).CrossRefGoogle ScholarPubMed
Hu, J., Zhang, J., Li, H., Chen, Y., and Wang, C.: A promising approach for the recovery of high value-added metals from spent lithium-ion batteries. J. Power Sources 351, 192199 (2017).CrossRefGoogle Scholar
Li, J., Wang, G., and Xu, Z.: Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries. J. Hazard. Mater. 302, 97104 (2016).CrossRefGoogle ScholarPubMed
Yun, L., Linh, D., Shui, L., Peng, X., Garg, A., Le, M.L.P., Asghari, S., and Sandoval, J.: Metallurgical and mechanical methods for recycling of lithium-ion battery pack for electric vehicles. Resour. Conserv. Recycl. 136, 198208 (2018).CrossRefGoogle Scholar
Gao, W., Liu, C., Cao, H., Zheng, X., Lin, X., Wang, H., Zhang, Y., and Sun, Z.: Comprehensive evaluation on effective leaching of critical metals from spent lithium-ion batteries. Waste Manag. 75, 477485 (2018).CrossRefGoogle ScholarPubMed
Sa, Q., Gratz, E., He, M., Lu, W., Apelian, D., and Wang, Y.: Synthesis of high performance LiNi1/3Mn1/3Co1/3O2 from lithium ion battery recovery stream. J. Power Sources 282, 140145 (2015).CrossRefGoogle Scholar
Ku, H., Jung, Y., Jo, M., Park, S., Kim, S., Yang, D., Rhee, K., An, E.M., Sohn, J., and Kwon, K.: Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching. J. Hazard. Mater. 313, 138–46 (2016).CrossRefGoogle ScholarPubMed
Chen, Y., Liu, N., Hu, F., Ye, L., Xi, Y., and Yang, S.: Thermal treatment and ammoniacal leaching for the recovery of valuable metals from spent lithium-ion batteries. Waste Manag. 75, 469476 (2018).CrossRefGoogle ScholarPubMed
Meng, X., Hao, J., Cao, H., Lin, X., Ning, P., Zheng, X., Chang, J., Zhang, X., Wang, B., and Sun, Z.: Recycling of LiNi1/3Co1/3Mn1/3O2 cathode materials from spent lithium-ion batteries using mechanochemical activation and solid-state sintering. Waste Manag. 84, 5463 (2019).CrossRefGoogle ScholarPubMed
Li, L., Qu, W., Zhang, X., Lu, J., Chen, R., Wu, F., and Amine, K.: Succinic acid-based leaching system: A sustainable process for recovery of valuable metals from spent Li-ion batteries. J. Power Sources 282, 544551 (2015).CrossRefGoogle Scholar
Li, L., Fan, E., Guan, Y., Zhang, X., Xue, Q., Wei, L., Wu, F., and Chen, R.: Sustainable recovery of cathode materials from spent lithium-ion batteries using lactic acid leaching system. ACS Sustain. Chem. Eng. 5, 52245233 (2017).CrossRefGoogle Scholar
Li, L., Bian, Y., Zhang, X., Xue, Q., Fan, E., Wu, F., and Chen, R.: Economical recycling process for spent lithium-ion batteries and macro- and micro-scale mechanistic study. J. Power Sources 377, 7079 (2018).CrossRefGoogle Scholar
Li, L., Dunn, J.B., Zhang, X.X., Gaines, L., Chen, R.J., Wu, F., and Amine, K.: Recovery of metals from spent lithium-ion batteries with organic acids as leaching reagents and environmental assessment. J. Power Sources 233, 180189 (2013).CrossRefGoogle Scholar
Suzuki, T., Nakamura, T., Inoue, Y., Niinae, M., and Shibata, J.: A hydrometallurgical process for the separation of aluminum, cobalt, copper and lithium in acidic sulfate media. Sep. Purif. Technol. 98, 396401 (2012).CrossRefGoogle Scholar
Tanong, K., Tran, L.-H., Mercier, G., and Blais, J.-F.: Recovery of Zn (II), Mn (II), Cd (II) and Ni (II) from the unsorted spent batteries using solvent extraction, electrodeposition and precipitation methods. J. Cleaner Prod. 148, 233244 (2017).CrossRefGoogle Scholar
Granata, G., Moscardini, E., Pagnanelli, F., Trabucco, F., and Toro, L.: Product recovery from Li-ion battery wastes coming from an industrial pre-treatment plant: Lab scale tests and process simulations. J. Power Sources 206, 393401 (2012).CrossRefGoogle Scholar
Chen, X., Luo, C., Zhang, J., Kong, J., and Zhou, T.: Sustainable recovery of metals from spent lithium-ion batteries: A green process. ACS Sustain. Chem. Eng. 3, 31043113 (2015).CrossRefGoogle Scholar
Meshram, P., Pandey, B.D., and Mankhand, T.R.: Hydrometallurgical processing of spent lithium ion batteries (LIBs) in the presence of a reducing agent with emphasis on kinetics of leaching. Chem. Eng. J. 281, 418427 (2015).CrossRefGoogle Scholar
Grützke, M., Mönnighoff, X., Horsthemke, F., Kraft, V., Winter, M., and Nowak, S.: Extraction of lithium-ion battery electrolytes with liquid and supercritical carbon dioxide and additional solvents. RSC Adv. 5, 4320943217 (2015).CrossRefGoogle Scholar
Liu, Y., Mu, D., Zheng, R., and Dai, C.: Supercritical CO2 extraction of organic carbonate-based electrolytes of lithium-ion batteries. RSC Adv. 4, 5452554531 (2014).CrossRefGoogle Scholar
Nowak, S. and Winter, M.: The role of sub- and supercritical CO2 as “processing solvent” for the recycling and sample preparation of lithium ion battery electrolytes. Molecules 22 , 403 (2017).CrossRefGoogle ScholarPubMed
Shi, Y., Chen, G., Liu, F., Yue, X., and Chen, Z.: Resolving the compositional and structural defects of degraded LiNixCoyMnzO2 particles to directly regenerate high-performance lithium-ion battery cathodes. ACS Energy Lett. 3, 16831692 (2018).CrossRefGoogle Scholar
Ross, B.J., LeResche, M., Liu, D., Durham, J.L., Dahl, E.U., and Lipson, A.L.: Mitigating the impact of thermal binder removal for direct li-ion battery recycling. ACS Sustain. Chem. Eng. 8, 1251112515 (2020).CrossRefGoogle Scholar
Sloop, S., Crandon, L., Allen, M., Koetje, K., Reed, L., Gaines, L., Sirisaksoontorn, W., and Lerner, M.: A direct recycling case study from a lithium-ion battery recall. Sustain. Mater. Technol. 25, e00152 (2020).Google Scholar
Gao, Y., Wang, C., Zhang, J., Jing, Q., Ma, B., Chen, Y., and Zhang, W.: Graphite recycling from the spent lithium-ion batteries by sulfuric acid curing–leaching combined with high-temperature calcination. ACS Sustain. Chem. Eng. 8, 94479455 (2020).CrossRefGoogle Scholar
Yang, Y., Song, S., Lei, S., Sun, W., Hou, H., Jiang, F., Ji, X., Zhao, W., and Hu, Y.: A process for combination of recycling lithium and regenerating graphite from spent lithium-ion battery. Waste Manag. 85, 529537 (2019).CrossRefGoogle ScholarPubMed
Li, J., Lu, Y., Yang, T., Ge, D., Wood, D.L. 3rd, and Li, Z.: Water-based electrode manufacturing and direct recycling of lithium-ion battery electrodes – A green and sustainable manufacturing system. iScience 23, 101081 (2020).CrossRefGoogle Scholar
Li, X., Zhang, J., Song, D., Song, J., and Zhang, L.: Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries. J. Power Sources 345, 7884 (2017).CrossRefGoogle Scholar
Nie, H., Xu, L., Song, D., Song, J., Shi, X., Wang, X., Zhang, L., and Yuan, Z.: LiCoO2: Recycling from spent batteries and regeneration with solid state synthesis. Green Chem. 17, 12761280 (2015).CrossRefGoogle Scholar
Sloop, S.E., Crandon, L., Allen, M., Lerner, M.M., Zhang, H., Sirisaksoontorn, W., Gaines, L., Kim, J., and Lee, M.: Cathode healing methods for recycling of lithium-ion batteries. Sustain. Mater. Technol. 22, e00113 (2019).Google Scholar
Lim, J.M., Hwang, T., Kim, D., Park, M.S., Cho, K., and Cho, M.: Intrinsic origins of crack generation in Ni-rich LiNi0.8Co0.1Mn0.1O2 layered oxide cathode material. Sci. Rep. 7, 39669 (2017).CrossRefGoogle ScholarPubMed
Shi, Y., Chen, G., and Chen, Z.: Effective regeneration of LiCoO2 from spent lithium-ion batteries: A direct approach towards high-performance active particles. Green Chem. 20, 851862 (2018).CrossRefGoogle Scholar
Li, X., Dogan, F., Lu, Y., Antunes, C., Shi, Y., Burrell, A., and Ban, C.: Fast determination of lithium content in spent cathodes for direct battery recycling. Adv. Sustain. Syst. 2000073 (2020).CrossRefGoogle Scholar
Yang, T., Lu, Y., Li, L., Ge, D., Yang, H., Leng, W., Zhou, H., Han, X., Schmidt, N., Ellis, M., and Li, Z.: An effective relithiation process for recycling lithium-ion battery cathode materials. Adv. Sustain. Syst. 4, 1900088 (2019).CrossRefGoogle Scholar
Shi, Y., Zhang, M., Meng, Y.S., and Chen, Z.: Ambient-pressure relithiation of degraded LixNi0.5Co0.2Mn0.3O2 (0<x<1) via eutectic solutions for direct regeneration of lithium-ion battery cathodes. Adv. Energy Mater. 9, 1900454 (2019).CrossRefGoogle Scholar
EverBatt - Argonne's closed-loop battery life-cycle model. Available at: https://www.anl.gov/egs/everbatt (accessed June 21, 2020).Google Scholar
Wang, X., Gaustad, G., Babbitt, C.W., and Richa, K.: Economies of scale for future lithium-ion battery recycling infrastructure. Resour. Conserv. Recycl. 83, 5362 (2014).CrossRefGoogle Scholar
Lithium-ion Battery Recycling Market by Battery Chemistry (Lithium-nickel Manganese Cobalt, Lithium-iron Phosphate, Lithium-Manganese Oxide, LTO, NCA, LCO), Industry (Automotive, Marine, Industrial, and Power), and Region - Global Forecast to 2030. Available at: https://www.marketsandmarkets.com/Market-Reports/lithium-ion-battery-recycling-market-153488928.html (accessed June 21, 2020).Google Scholar
Plastic Packaging Resin Identification Codes. Available at: https://plastics.americanchemistry.com/Plastic-Packaging-Resin-Identification-Codes/ (accessed June 21, 2020).Google Scholar
Commission Decision (97/129/EC) establishing the ID system for packaging materials pursuant to European Parliament & Council Directive. Communities, O. J. o. t. E., Ed. EUR-Lex: 1997; Vol. L 50/28.Google Scholar
Liebmann, A., Schreib, I., Schlözer, E.R., and Majschak, P.J.: Practical case studies: Easy opening for consumer-friendly, peelable packaging. J. Adhes. Sci. Technol. 26, 24372448 (2012).CrossRefGoogle Scholar
Gaines, L.: The future of automotive lithium-ion battery recycling: Charting a sustainable course. Sustain. Mater. Technol. 1-2, 27 (2014).Google Scholar
Sicklinger, J., Metzger, M., Beyer, H., Pritzl, D., and Gasteiger, H.A.: Ambient storage derived surface contamination of NCM811 andNCM111: Performance implications and mitigation strategies. J. Electrochem. Soc 12, A2322A2335 (2019).CrossRefGoogle Scholar
Zhang, H., Xu, J., and Zhang, J.: Surface-coated LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode materials by Al2O3, ZrO2, and Li2O-2B2O3 thin-layers for improving the performance of lithium ion batteries. Front. Mater. 6 (2019).CrossRefGoogle Scholar
Bresser, D., Buchholz, D., Moretti, A., Varzi, A., and Passerini, S.: Alternative binders for sustainable electrochemical energy storage – The transition to aqueous electrode processing and bio-derived polymers. Energy Environ. Sci. 11, 30963127 (2018).CrossRefGoogle Scholar
Zhong, Z., Chen, L., Huang, S., Shang, W., Kong, L., Sun, M., Chen, L., and Ren, W.: Single-crystal LiNi0.5Co0.2Mn0.3O2: A high thermal and cycling stable cathodes for lithium-ion batteries. J. Mater. Sci. 55, 29132922 (2019).CrossRefGoogle Scholar
Fan, X., Hu, G., Zhang, B., Ou, X., Zhang, J., Zhao, W., Jia, H., Zou, L., Li, P., and Yang, Y.: Crack-free single-crystalline Ni-rich layered NCM cathode enable superior cycling performance of lithium-ion batteries. Nano Energy 70, 104450 (2020).CrossRefGoogle Scholar
Zhang, F., Lou, S., Li, S., Yu, Z., Liu, Q., Dai, A., Cao, C., Toney, M.F., Ge, M., Xiao, X., Lee, W.K., Yao, Y., Deng, J., Liu, T., Tang, Y., Yin, G., Lu, J., Su, D., and Wang, J.: Surface regulation enables high stability of single-crystal lithium-ion cathodes at high voltage. Nat. Commun. 11, 3050 (2020).CrossRefGoogle ScholarPubMed
Sun, L., Zhang, Z., Hu, X., Tian, H., Zhang, Y., and Yang, X.: Realization of ti doping by electrostatic assembly to improve the stability of LiCoO2 cycled to 4.5 V. J. Electrochem. Soc. 166, A1793A1798 (2019).CrossRefGoogle Scholar
Zhang, J.-N., Li, Q., Ouyang, C., Yu, X., Ge, M., Huang, X., Hu, E., Ma, C., Li, S., Xiao, R., Yang, W., Chu, Y., Liu, Y., Yu, H., Yang, X.-Q., Huang, X., Chen, L., and Li, H.: Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nat. Energy 4, 594603 (2019).CrossRefGoogle Scholar
Louli, A.J., Genovese, M., Weber, R., Hames, S.G., Logan, E.R., and Dahn, J.R.: Exploring the impact of mechanical pressure on the performance of anode-free lithium metal cells. J. Electrochem. Soc. 166, A1291A1299 (2019).CrossRefGoogle Scholar
Weber, R., Genovese, M., Louli, A.J., Hames, S., Martin, C., Hill, I.G., and Dahn, J.R.: Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nat. Energy 4, 683689 (2019).CrossRefGoogle Scholar
Tan, D.H.S., Banerjee, A., Chen, Z., and Meng, Y.S.: From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nat. Nanotechnol. 15, 170180 (2020).CrossRefGoogle ScholarPubMed
Lee, Y.-G., Fujiki, S., Jung, C., Suzuki, N., Yashiro, N., Omoda, R., Ko, D.-S., Shiratsuchi, T., Sugimoto, T., Ryu, S., Ku, J.H., Watanabe, T., Park, Y., Aihara, Y., Im, D., and Han, I.T.: High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nat. Energy 5, 299308 (2020).CrossRefGoogle Scholar
Song, Y.B., Kim, D.H., Kwak, H., Han, D., Kang, S., Lee, J.H., Bak, S.M., Nam, K.W., Lee, H.W., and Jung, Y.S.: Tailoring solution-processable Li argyrodites Li6+xP1-xMxS5I (M = Ge, Sn) and their microstructural evolution revealed by cryo-TEM for all-solid-state batteries. Nano Lett. 20, 43374345 (2020).CrossRefGoogle ScholarPubMed
Miura, A., Rosero-Navarro, N.C., Sakuda, A., Tadanaga, K., Phuc, N.H.H., Matsuda, A., Machida, N., Hayashi, A., and Tatsumisago, M.: Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery. Nat. Rev. Chem. 3, 189198 (2019).CrossRefGoogle Scholar
Kim, D.H., Oh, D.Y., Park, K.H., Choi, Y.E., Nam, Y.J., Lee, H.A., Lee, S.M., and Jung, Y.S.: Infiltration of solution-processable solid electrolytes into conventional Li-ion-battery electrodes for all-solid-state Li-ion batteries. Nano Lett. 17, 30133020 (2017).CrossRefGoogle ScholarPubMed
Fang, Y., Xiao, L., Chen, Z., Ai, X., Cao, Y., and Yang, H.: Recent advances in sodium-ion battery materials. Electrochem. Energy Rev. 1, 294323 (2018).CrossRefGoogle Scholar
Liu, T., Zhang, Y., Jiang, Z., Zeng, X., Ji, J., Li, Z., Gao, X., Sun, M., Lin, Z., Ling, M., Zheng, J., and Liang, C.: Exploring competitive features of stationary sodium ion batteries for electrochemical energy storage. Energy Environ. Sci. 12, 15121533 (2019).CrossRefGoogle Scholar
Chayambuka, K., Mulder, G., Danilov, D.L., and Notten, P.H.L.: Sodium-ion battery materials and electrochemical properties reviewed. Adv. Energy Mater. 8, 1800079 (2018).CrossRefGoogle Scholar
Liu, T., Zhang, Y., Chen, C., Lin, Z., Zhang, S., and Lu, J.: Sustainability-inspired cell design for a fully recyclable sodium ion battery. Nat. Commun. 10, 1965 (2019).CrossRefGoogle ScholarPubMed
Chen, J., Zhong, S., Zhang, X., Liu, J., Shi, S., Hu, Y., and Wu, L.: High performance of hexagonal plates P2-Na2/3Fe1/2Mn1/2O2 cathode material synthesized by an improved solid-state method. Mater. Lett. 202, 2124 (2017).CrossRefGoogle Scholar
Bai, Y., Zhao, L., Wu, C., Li, H., Li, Y., and Wu, F.: Enhanced sodium ion storage behavior of P2-Type Na(2/3)Fe(1/2)Mn(1/2)O2 synthesized via a chelating agent assisted route. ACS Appl. Mater. Interfaces 8, 28572865 (2016).CrossRefGoogle Scholar
Jin, T., Wang, P.F., Wang, Q.C., Zhu, K., Deng, T., Zhang, J., Zhang, W., Yang, X.Q., Jiao, L., and Wang, C.: Realizing complete solid-solution reaction in a high sodium-content P2-type cathode for high-performance sodium-ion batteries. Angew Chem. Int. Ed. Engl. 59, 28 (2020).CrossRefGoogle Scholar