Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T22:51:27.509Z Has data issue: false hasContentIssue false

Comparison of carbon sequestration efficacy between artificial photosynthetic carbon dioxide conversion and timberland reforestation

Published online by Cambridge University Press:  25 September 2020

Santiago Gonzalez Hernandez
Affiliation:
Air Company, 407 Johnson Avenue, Brooklyn, NY11206, USA
Stafford W. Sheehan*
Affiliation:
Air Company, 407 Johnson Avenue, Brooklyn, NY11206, USA
*
Address all correspondence to Stafford W. Sheehan at [email protected]
Get access

Abstract

A comparison between electrochemical carbon dioxide conversion and reforestation is presented. By comparing thermodynamic and forestry data, recommendations for technology development can be made.

With the global average temperature steadily increasing due to anthropogenic emission of greenhouse gases into the atmosphere, there has been increasing interest worldwide in new technologies for carbon capture, utilization, and storage (CCUS). This coincides with the decrease in cost of deployment of intermittent renewable electricity sources, specifically solar energy, necessitating development of new methods for energy storage. Carbon dioxide conversion technologies driven by photovoltaics aim to address both these needs. To adequately contribute to greenhouse gas reduction, the carbon dioxide conversion technology deployed should have a substantially higher rate of carbon dioxide removal than planting an equivalent-sized forest. Using consistent methodologies, we analyze the effectiveness of model photovoltaic-driven carbon dioxide conversion technologies that produce liquid alcohols as compared to planting an equivalent forest. This analysis serves to establish an energy use boundary for carbon dioxide conversion technology, in order to be a viable alternative as a net carbon negative technology.

Type
Original Research
Copyright
Copyright © The Authors, 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bui, M., Adjiman, C.S., Bardow, A., Anthony, E.J., Boston, A., Brown, S., Fennell, P.S., Fuss, S., Galindao, A., Hackett, L.A., Hallett, J.P., Herzog, H.J., Jackson, G., Kemper, J., Krevor, S., Maitland, G.C., Matuszewski, M., Metcalfe, I.S., Petit, C., Puxty, G., Reimer, J., Reiner, D.M., Rubin, E.S., Scott, S.A., Shah, N., Smit, B., Trusler, J.P.M., Webley, P., Wilcox, J., and Mac Dowell, N.: Carbon capture and storage (CCS): The way forward. Energy Environ. Sci. 11, 10621176 (2018).CrossRefGoogle Scholar
Katelhon, A., Meys, R., Deutz, S., Suh, S., and Bardow, A.: Climate change mitigation potential of carbon capture and utilization in the chemical industry. Proc. Natl. Acad. Sci. USA 116, 1118711194 (2019).CrossRefGoogle ScholarPubMed
International Energy Administration: Global CO2 emissions in 2019 (IEA, 2020), Paris. Available at: https://www.iea.org/articles/global-co2-emissions-in-2019 (accessed August 6, 2020).Google Scholar
Centi, G. and Perathoner, S.: Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal. Today 148, 191205 (2009).CrossRefGoogle Scholar
Sheehan, S.W., Cave, E.R., Kuhl, K.P., Flanders, N., Smeigh, A.L., and Co, D.T.: Commercializing solar fuels within today's markets. Chem 3, 37 (2017).CrossRefGoogle Scholar
Herbert, G.M.J., Iniyan, S., Sreevalsan, E., and Rajapandian, S.: A review of wind energy technologies. Renew. Sustain. Energy Rev. 11, 11171145 (2007).CrossRefGoogle Scholar
Des Marais, D.J.: When did photosynthesis emerge on earth? Science 289, 17031705 (2000).Google Scholar
Blankenship, R.E., Blankenship, R.E., Tiede, D.M., Barber, J., Brudvig, G.W., Fleming, G., Ghirardi, M., Gunner, M.R., Junge, W., Kramer, D.M., Melis, A., and Moore, T.A.: Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332, 805809 (2011).CrossRefGoogle ScholarPubMed
Green, M.A., Dunlow, E.D., Hohl-Ebinger, J., Yoshita, M., Kopidakis, N., and Ho-Baillie, A.W.Y.: Solar cell efficiency tables (Version 55). Prog. Photovolt. Res. Appl. 28, 315 (2020).CrossRefGoogle Scholar
Hennessey, S. and Farràs, F.: Production of solar chemicals: Gaining selectivity with hybrid molecule/semiconductor assemblies. Chem. Commun. 54, 66626680 (2018).CrossRefGoogle ScholarPubMed
Yan, Z., Hitt, J.L., Turner, J.A., and Mallouk, T.E.: Renewable electricity storage using electrolysis. Proc. Natl. Acad. Sci. USA 117, 1255812563 (2020).CrossRefGoogle ScholarPubMed
Walter, M.G., Warren, E.L., McKone, J.R., Boettcher, S.W., Mi, O., Santori, E.A., and Lewis, N.S.: Solar water splitting cells. Chem. Rev. 110, 64466473 (2010).CrossRefGoogle ScholarPubMed
Dogutan, D.K. and Nocera, D.G.: Artificial photosynthesis at efficiencies greatly exceeding that of natural photosynthesis. Acc. Chem. Res. 52, 31433148 (2019).CrossRefGoogle ScholarPubMed
Ulmer, U., Dingle, T., Duchesne, P.N., Morris, R.H., Tavasoli, A., Wood, T., and Ozin, G.A.: Fundamentals and applications of photocatalytic CO2 methanation. Nat. Commun. 10, 112 (2019).CrossRefGoogle ScholarPubMed
Fountaine, K.T., Lewerenz, H.J., and Atwater, H.A.: Efficiency limits for photoelectrochemical water-splitting. Nat. Commun. 7, 19 (2016).CrossRefGoogle ScholarPubMed
Ardo, S., Fernandez Rivas, D., Modestino, M.A., Greiving, V.S., Abdi, F.F., Llado, E.A., Artero, V., Ayers, K., Battaglia, C., Becker, J.P., Bederak, D., Berger, A., Buda, F., Chinello, E., Dam, B., Di Palma, V., Edvinsson, T., Fujii, K., Gardeniers, H., Geerlings, H., Hashemi, S.M.H., Haussener, S., Houle, F., Huskens, J., James, B.D., Konrad, K., Kudo, A., Kunturu, P.P., Lohse, D., Mei, B., Miller, E.L., Moore, G.F., Muller, J., Orchard, K.L., Rosser, T.E., Saadi, F.H., Schuttauf, J.-W., Seger, B., Sheehan, S.W., Smith, W.A., Spurgeon, J., Tang, M.H., van de Krol, R., Vesborg, P.C.K., and Westerik, P.: Pathways to electrochemical solar-hydrogen technologies. Energy Environ. Sci. 11, 27682783 (2018).CrossRefGoogle Scholar
Dotan, H., Landman, A., Sheehan, S.W., Malviya, K.D., Shter, G.E., Grave, D.A., Arzi, Z., Yehudai, N., Halabi, M., Gal, N., and Hadari, N.: Decoupled hydrogen and oxygen evolution by a two-step electrochemical–chemical cycle for efficient overall water splitting. Nat. Energy 4, 786795 (2019).CrossRefGoogle Scholar
Smith, W.A., Burdyny, T., Vermaas, D.A., and Geerlings, H.: Pathways to industrial-scale fuel out of thin air from CO2 electrolysis. Joule 3, 18221834 (2019).CrossRefGoogle Scholar
Chen, C., Khosrowabadi Kotyk, J.F., and Sheehan, S.W.: Progress toward commercial application of electrochemical carbon dioxide reduction. Chem 4, 25712586 (2018).CrossRefGoogle Scholar
Bertau, M., Bertau, M., Offermanns, H., Plass, L., Schmidt, F., and Wernicke, H.J.: Methanol: The Basic Chemical and Energy Feedstock of the Future (Springer, 2014), Heidelberg; p. 677.CrossRefGoogle Scholar
Marlin, D.S., Sarron, E., and Sigurbjörnsson, O.: Process advantages of direct CO2 to methanol synthesis. Front. Chem. 6, 446 (2018).CrossRefGoogle ScholarPubMed
Ozin, G.: Sunshine not moonshine – Happy hour with carbon dioxide. Adv. Sci. News (2019). Available at: https://www.advancedsciencenews.com/sunshine-not-moonshine-happy-hour-with-carbon-dioxide/ (accessed August 8, 2020).Google Scholar
Hori, Y., Murata, A., and Takahashi, R.: Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J. Chem. Soc., Faraday Trans. 1, 23092326 (1989).CrossRefGoogle Scholar
Li, Y.C., Wang, Z., Yuan, T., Nam, D.H., Luo, M., Wicks, J., Chen, B., Li, J., Li, F., de Arquer, F.P.G., and Wang, Y.: Binding site diversity promotes CO2 electroreduction to ethanol. J. Am. Chem. Soc. 141, 85848591 (2019).CrossRefGoogle Scholar
Wu, Y., Jiang, Z., Lu, X., Liang, Y., and Wang, H.: Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 575, 639642 (2019).CrossRefGoogle ScholarPubMed
Li, C.W., Ciston, J., and Kanan, M.W.: Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504507 (2014).CrossRefGoogle ScholarPubMed
Haas, T., Krause, R., Weber, R., Demler, M., and Schmid, G.: Technical photosynthesis involving CO2 electrolysis and fermentation. Nat. Catal. 1, 3239 (2018).CrossRefGoogle Scholar
Oswalt, S.N., Smith, W.B., Miles, P.D., and Pugh, S.A.: Forest resources of the United States, 2017: A technical document supporting the Forest Service 2020 RPA Assessment. Gen. Tech. Rep. WO-97. Washington, DC: US Department of Agriculture, Forest Service, Washington Office, 97 (2019).CrossRefGoogle Scholar
Ayers, K.E., Anderson, E.B., Capuano, C., Carter, B., Dalton, L., Hanlon, G., Manco, J., and Niedzwiecki, M.: Research advances towards low cost, high efficiency PEM electrolysis. ECS Trans. 33, 3 (2010).CrossRefGoogle Scholar
Haynes, W.M.: CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 2014).Google Scholar
Rochelle, G.T.: Amine scrubbing for CO2 capture. Science 325, 16521654 (2009).CrossRefGoogle ScholarPubMed
Nowak, D.J. and Crane, D.E.: Carbon storage and sequestration by urban trees in the USA. Environ. Pollut. 116, 381389 (2002).CrossRefGoogle ScholarPubMed
Mathias, J.D., Anderies, J.M., and Janssen, M.A.: On our rapidly shrinking capacity to comply with the planetary boundaries on climate change. Sci. Rep. 7, 42061 (2017).CrossRefGoogle ScholarPubMed
Thomas, S.C. and Martin, A.R.: Carbon content of tree tissues: A synthesis. Forests 3, 332352 (2012).CrossRefGoogle Scholar
Crowther, T.W., Glick, H.B., Covey, K.R., Bettigole, C., Maynard, D.S., Thomas, S.M., Smith, J.R., Hintler, G., Duguid, M.C., Amatulli, G., and Tuanmu, M.N.: Mapping tree density at a global scale. Nature 525, 201205 (2015).CrossRefGoogle ScholarPubMed
Dobos, A.P.: PVWatts Version 5 Manual. National Renewable Energy Lab, NREL, Golden, CO, USA, 2014.CrossRefGoogle Scholar
Saxe, H.: LCA-based comparison of the climate footprint of beer vs. wine & spirits. Fødevareøkonomisk Institut, Københavns Universitet. Report No. 207 (2010).Google Scholar
Schlömer, S., Bruckner, T., Fulton, L., Hertwich, E., McKinnon, A., Perczyk, D., Roy, J., Schaeffer, R., Sims, R., Smith, P., and Wiser, R.: Annex III: Technology-specific cost and performance parameters. In Climate Change 2014: Mitigation of ClimateChange. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on ClimateChange, Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., Kriemann, B., Savolainen, J., Schlömer, S., von Stechow, C., Zwickel, T. and Minx, J.C., eds. (Cambridge University Press, Cambridge, UK and New York, NY, 2014).Google Scholar
Orella, M.J., Brown, S.M., Leonard, M.E., Roman-Leshov, Y., and Brushett, F.R.: A general tecno-economic model for evaluating emerging electrolytic processes. Energy Technol. (2020). doi:10.1002/ente.201900994.Google Scholar
Jouny, M., Luc, W., and Jiao, F.: General techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 57, 21652177 (2018).CrossRefGoogle Scholar
MoultonR.J., Richards, K. R. R.J., Richards, K. R.: Costs of Sequestering Carbon Through Tree Planting and Forest Management in the United States, Vol. 58 (US Department of Agriculture, Forest Service, Washington, DC, 1990).Google Scholar
Torres, A.B., Marchant, R., Lovett, J.C., Smart, J.C., and Tipper, R.: Analysis of the carbon sequestration costs of afforestation and reforestation agroforestry practices and the use of cost curves to evaluate their potential for implementation of climate change mitigation. Ecol. Econ. 69, 469477 (2010).CrossRefGoogle Scholar
Griscom, B.W., Adams, J., Ellis, P.W., Houghton, R.A., Lomax, G., Miteva, D.A., Schlesinger, W.H., Shoch, D., Siikamäki, J.V., Smith, P., and Woodbury, P.: Natural climate solutions. Proc. Natl. Acad. Sci. USA 114, 1164511650 (2017).CrossRefGoogle ScholarPubMed
Shaner, M.R., Atwater, H.A., Lewis, N.S., and McFarland, E.W.: A comparative technoeconomic analysis of renewable hydrogen production using solar energy. Energy Environ. Sci. 9, 23542371 (2016).CrossRefGoogle Scholar
IPCC: Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Metz B., Davidson O.R., Bosch P.R., Dave R., Meyer L.A., eds. (Cambridge University Press, Cambridge, UK and New York, NY, 2007), pp. 543.Google Scholar