Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T06:19:42.607Z Has data issue: false hasContentIssue false

In situ characterizations of photoelectrochemical cells for solar fuels and chemicals

Published online by Cambridge University Press:  27 October 2020

Rambabu Yalavarthi
Affiliation:
Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University Olomouc, Olomouc771 46, Czech Republic
Olivier Henrotte
Affiliation:
Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University Olomouc, Olomouc771 46, Czech Republic
Alessandro Minguzzi
Affiliation:
Dipartimento di Chimica, Università degli Studi di Milano, MilanoI-20133, Italy
Paolo Ghigna
Affiliation:
Dipartimento di Chimica, Università di Pavia, PaviaI-27100, Italy INSTM, FirenzeI-50121, Italy
Daniel A. Grave
Affiliation:
Department of Materials Engineering and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva8410501, Israel
Alberto Naldoni*
Affiliation:
Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University Olomouc, Olomouc771 46, Czech Republic
*
Address all correspondence to Alberto Naldoni at [email protected]
Get access

Abstract

Environmental concerns deriving from fossil fuel dependency are driving an energy transition based on sustainable processes to make fuels and chemicals. Solar hydrogen is the pillar of this new green economy, but the technological readiness level of PV electrolysis and direct photoelectrochemical (PEC) electrolysis are still too low to allow broad commercialization. Direct conversion through PEC technology has more potential in the medium–long term but must be first guided by the scientific enhancements to improve device efficiencies. For this purpose, in situ and operando photoelectrochemistry will guide the discovery of new materials and processes to make solar fuels and chemicals in PEC cells.

The use of advanced in situ and operando characterizations under working photoelectrochemical (PEC) conditions is reviewed here and anticipated to be a fundamental tool for achieving a basic understanding of new PEC processes and for enabling the large-scale development of PEC technology by 2050, thus delivering fuels and chemicals having zero (or negative) carbon footprint. Hydrogen from solar water splitting is the most popular solar fuel and can be mainly produced by indirect photovoltaic-driven electrolysis (PV electrolysis) and direct photoelectrochemistry. Although PV electrolysis has already been developed on a level of MW-scale pilot plants, PEC technology, which is much less mature, holds several advantages in the long term over PV-electrolysis systems. The key enabling feature to developing PEC technology is the improvement of the photoelectrode materials which are responsible for the absorption of light, and transport of the photo-generated charge carriers to drive the electrochemical surface reaction. These processes are often complex and multistep, spanning multiple timescales and following the simultaneous detection of photoelectrodes modification and formation of reaction intermediates/products can be achieved using eight well-known characterization techniques here presented.

Type
Review Article
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BP Statistical Review of World Energy, 68th ed. (BP Publication, 2019).Google Scholar
Hughes, T.P., Kerry, J.T., Álvarez-Noriega, M., Álvarez-Romero, J.G., Anderson, K.D., Baird, A.H., Babcock, R.C., Beger, M., Bellwood, D.R., Berkelmans, R., Bridge, T.C., Butler, I.R., Byrne, M., Cantin, N.E., Comeau, S., Connolly, S.R., Cumming, G.S., Dalton, S.J., Diaz-Pulido, G., Eakin, C.M., Figueira, W.F., Gilmour, J.P., Harrison, H.B., Heron, S.F., Hoey, A.S., Hobbs, J.-P.A., Hoogenboom, M.O., Kennedy, E.V., Kuo, C.-y., Lough, J.M., Lowe, R.J., Liu, G., McCulloch, M.T., Malcolm, H.A., McWilliam, M.J., Pandolfi, J.M., Pears, R.J., Pratchett, M.S., Schoepf, V., Simpson, T., Skirving, W.J., Sommer, B., Torda, G., Wachenfeld, D.R., Willis, B.L., and Wilson, S.K.: Global warming and recurrent mass bleaching of corals. Nature 543, 373377 (2017).CrossRefGoogle ScholarPubMed
Misra, A.K.: Climate change and challenges of water and food security. Int. J. Sustain. Built Environ. 3, 153165 (2014).CrossRefGoogle Scholar
Wiens, J.J.: Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14, e2001104 (2016).CrossRefGoogle ScholarPubMed
Running, S.W.: Is global warming causing more, larger wildfires? Science 313, 927928 (2006).CrossRefGoogle ScholarPubMed
Edwards, P.P., Kuznetsov, V.L., David, W.I.F., and Brandon, N.P.: Hydrogen and fuel cells: Towards a sustainable energy future. Energy Policy 36, 43564362 (2008).CrossRefGoogle Scholar
Erisman, J.W., Sutton, M.A., Galloway, J., Klimont, Z., and Winiwarter, W.: How a century of ammonia synthesis changed the world. Nat. Geosci. 1, 636639 (2008).CrossRefGoogle Scholar
Gibson, T.L. and Kelly, N.A.: Optimization of solar powered hydrogen production using photovoltaic electrolysis devices. Int. J. Hydrogen Energy 33, 59315940 (2008).CrossRefGoogle Scholar
Grätzel, M.: Photoelectrochemical cells. Nature 414, 338344 (2001).CrossRefGoogle ScholarPubMed
Ardo, S., Fernandez Rivas, D., Modestino, M.A., Schulze Greiving, V., Abdi, F.F., Alarcon Llado, E., Artero, V., Ayers, K., Battaglia, C., Becker, J.-P., Bederak, D., Berger, A., Buda, F., Chinello, E., Dam, B., Di Palma, V., Edvinsson, T., Fujii, K., Gardeniers, H., Geerlings, H., Hashemi, S.M.H., Haussener, S., Houle, F., Huskens, J., James, B.D., Konrad, K., Kudo, A., Kunturu, P.P., Lohse, D., Mei, B., Miller, E.L., Moore, G.F., Muller, J., Orchard, K.L., Rosser, T.E., Saadi, F.H., Schüttauf, J.-W., Seger, B., Sheehan, S.W., Smith, W.A., Spurgeon, J., Tang, M.H., van de Krol, R., Vesborg, P.C.K., and Westerik, P.: Pathways to electrochemical solar-hydrogen technologies. Energy Environ. Sci. 11, 27682783 (2018).CrossRefGoogle Scholar
Pihosh, Y., Turkevych, I., Mawatari, K., Uemura, J., Kazoe, Y., Kosar, S., Makita, K., Sugaya, T., Matsui, T., Fujita, D., Tosa, M., Kondo, M., and Kitamori, T.: Photocatalytic generation of hydrogen by core-shell WO3/BiVO4 nanorods with ultimate water splitting efficiency. Sci. Rep. 5, 11141 (2015).CrossRefGoogle Scholar
Jacobsson, T.J.: Photoelectrochemical water splitting: An idea heading towards obsolescence? Energy Environ. Sci. 11, 19771979 (2018).CrossRefGoogle Scholar
Wang, Y., Yan, D., El Hankari, S., Zou, Y., and Wang, S.: Recent progress on layered double hydroxides and their derivatives for electrocatalytic water splitting. Adv. Sci. 5, 1800064 (2018).CrossRefGoogle ScholarPubMed
Haussener, S., Hu, S., Xiang, C., Weber, A.Z., and Lewis, N.S.: Simulations of the irradiation and temperature dependence of the efficiency of tandem photoelectrochemical water-splitting systems. Energy Environ. Sci. 6, 36053618 (2013).CrossRefGoogle Scholar
van de Krol, R. and Parkinson, B.A.: Perspectives on the photoelectrochemical storage of solar energy. MRS Energy Sustain. 4, e13 (2017).CrossRefGoogle Scholar
Pan, L., Kim, J.H., Mayer, M.T., Son, M.-K., Ummadisingu, A., Lee, J.S., Hagfeldt, A., Luo, J., and Grätzel, M.: Boosting the performance of Cu2O photocathodes for unassisted solar water splitting devices. Nat. Catal. 1, 412420 (2018).CrossRefGoogle Scholar
Jang, J.-W., Du, C., Ye, Y., Lin, Y., Yao, X., Thorne, J., Liu, E., McMahon, G., Zhu, J., Javey, A., Guo, J., and Wang, D.: Enabling unassisted solar water splitting by iron oxide and silicon. Nat. Commun. 6, 7447 (2015).CrossRefGoogle ScholarPubMed
Han, L., Abdi, F.F., van de Krol, R., Liu, R., Huang, Z., Lewerenz, H.-J., Dam, B., Zeman, M., and Smets, A.H.M.: Efficient water-splitting device based on a bismuth vanadate photoanode and thin-film silicon solar cells. ChemSusChem 7, 28322838 (2014).CrossRefGoogle ScholarPubMed
Rothschild, A. and Dotan, H.: Beating the efficiency of photovoltaics-powered electrolysis with tandem cell photoelectrolysis. ACS Energy Lett. 2, 4551 (2017).CrossRefGoogle Scholar
Segev, G., Beeman, J.W., Greenblatt, J.B., and Sharp, I.D.: Hybrid photoelectrochemical and photovoltaic cells for simultaneous production of chemical fuels and electrical power. Nat. Mater. 17, 11151121 (2018).CrossRefGoogle ScholarPubMed
Landman, A., Dotan, H., Shter, G.E., Wullenkord, M., Houaijia, A., Maljusch, A., Grader, G.S., and Rothschild, A.: Photoelectrochemical water splitting in separate oxygen and hydrogen cells. Nat. Mater. 16, 646651 (2017).CrossRefGoogle ScholarPubMed
Landman, A., Halabi, R., Dias, P., Dotan, H., Mehlmann, A., Shter, G.E., Halabi, M., Naseraldeen, O., Mendes, A., Grader, G.S., and Rothschild, A.: Decoupled photoelectrochemical water splitting system for centralized hydrogen production. Joule 4, 448471 (2020).CrossRefGoogle Scholar
Fujishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 3738 (1972).CrossRefGoogle Scholar
Hu, S., Shaner, M.R., Beardslee, J.A., Lichterman, M., Brunschwig, B.S., and Lewis, N.S.: Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 344, 10051009 (2014).CrossRefGoogle ScholarPubMed
Kenney, M.J., Gong, M., Li, Y., Wu, J.Z., Feng, J., Lanza, M., and Dai, H.: High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. Science 342, 836840 (2013).CrossRefGoogle ScholarPubMed
Dias, P., Vilanova, A., Lopes, T., Andrade, L., and Mendes, A.: Extremely stable bare hematite photoanode for solar water splitting. Nano Energy 23, 7079 (2016).CrossRefGoogle Scholar
Kennedy, J.H. and Frese, K.W. Jr.: Photooxidation of water at α-Fe2O3 electrodes. J. Electrochem. Soc. 125, 709 (1978).CrossRefGoogle Scholar
Cesar, I., Sivula, K., Kay, A., Zboril, R., and Grätzel, M.: Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting. J. Phys. Chem. C 113, 772782 (2009).CrossRefGoogle Scholar
Warren, S.C., Voïtchovsky, K., Dotan, H., Leroy, C.M., Cornuz, M., Stellacci, F., Hébert, C., Rothschild, A., and Grätzel, M.: Identifying champion nanostructures for solar water-splitting. Nat. Mater. 12, 842849 (2013).CrossRefGoogle ScholarPubMed
Dotan, H., Kfir, O., Sharlin, E., Blank, O., Gross, M., Dumchin, I., Ankonina, G., and Rothschild, A.: Resonant light trapping in ultrathin films for water splitting. Nat. Mater. 12, 158164 (2013).CrossRefGoogle ScholarPubMed
Piekner, Y., Dotan, H., Tsyganok, A., Malviya, K.D., Grave, D.A., Kfir, O., and Rothschild, A.: Implementing strong interference in ultrathin film top absorbers for tandem solar cells. ACS Photonics 5, 50685078 (2018).CrossRefGoogle Scholar
Sivula, K. and van de Krol, R.: Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 1, 15010 (2016).CrossRefGoogle Scholar
Guo, X., Wang, L., and Tan, Y.: Hematite nanorods co-doped with Ru cations with different valence states as high performance photoanodes for water splitting. Nano Energy 16, 320328 (2015).CrossRefGoogle Scholar
Hayes, D., Hadt, R.G., Emery, J.D., Cordones, A.A., Martinson, A.B.F., Shelby, M.L., Fransted, K.A., Dahlberg, P.D., Hong, J., Zhang, X., Kong, Q., Schoenlein, R.W., and Chen, L.X.: Electronic and nuclear contributions to time-resolved optical and X-ray absorption spectra of hematite and insights into photoelectrochemical performance. Energy Environ. Sci. 9, 37543769 (2016).CrossRefGoogle Scholar
Segev, G., Dotan, H., Ellis, D.S., Piekner, Y., Klotz, D., Beeman, J.W., Cooper, J.K., Grave, D.A., Sharp, I.D., and Rothschild, A.: The spatial collection efficiency of charge carriers in photovoltaic and photoelectrochemical cells. Joule 2, 210224 (2018).CrossRefGoogle Scholar
Kay, A., Fiegenbaum-Raz, M., Müller, S., Eichberger, R., Dotan, H., van de Krol, R., Abdi, F.F., Rothschild, A., Friedrich, D., and Grave, D.A.: Effect of doping and excitation wavelength on charge carrier dynamics in hematite by time-resolved microwave and terahertz photoconductivity. Adv. Funct. Mater. 30, 1901590 (2020).CrossRefGoogle Scholar
Carneiro, L.M., Cushing, S.K., Liu, C., Su, Y., Yang, P., Alivisatos, A.P., and Leone, S.R.: Excitation-wavelength-dependent small polaron trapping of photoexcited carriers in α-Fe2O3. Nat. Mater. 16, 819825 (2017).CrossRefGoogle ScholarPubMed
Tilley, S.D.: Recent advances and emerging trends in photo-electrochemical solar energy conversion. Adv. Energy Mater. 9, 1802877 (2019).CrossRefGoogle Scholar
Wang, S., He, T., Chen, P., Du, A., Ostrikov, K. K., Huang, W., and Wang, L.: In situ formation of oxygen vacancies achieving near-complete charge separation in planar BiVO4 photoanodes. Adv. Mater., 32, 2001385 (2020).CrossRefGoogle ScholarPubMed
Guijarro, N., Bornoz, P., Prévot, M., Yu, X., Zhu, X., Johnson, M., Jeanbourquin, X., Le Formal, F., and Sivula, K.: Evaluating spinel ferrites MFe2O4 (M = Cu, Mg, Zn) as photoanodes for solar water oxidation: prospects and limitations. Sustain. Energy Fuels 2, 103117 (2018).CrossRefGoogle Scholar
Zhu, X., Guijarro, N., Liu, Y., Schouwink, P., Wells, R.A., Le Formal, F., Sun, S., Gao, C., and Sivula, K.: Spinel structural disorder influences solar-water-splitting performance of ZnFe2O4 nanorod photoanodes. Adv. Mater. 30, 1801612 (2018).CrossRefGoogle Scholar
Jiang, C.-M., Segev, G., Hess, L.H., Liu, G., Zaborski, G., Toma, F.M., Cooper, J.K., and Sharp, I.D.: Composition-dependent functionality of copper vanadate photoanodes. ACS Appl. Mater. Interfaces 10, 1062710633 (2018).CrossRefGoogle ScholarPubMed
Song, A., Chemseddine, A., Ahmet, I.Y., Bogdanoff, P., Friedrich, D., Abdi, F.F., Berglund, S.P., and van de Krol, R.: Evaluation of copper vanadate (β-Cu2V2O7) as a photoanode material for photoelectrochemical water oxidation. ACS Appl. Mater. Interfaces 32, 24082419 (2020).Google Scholar
Kölbach, M., Hempel, H., Harbauer, K., Schleuning, M., Petsiuk, A., Höflich, K., Deinhart, V., Friedrich, D., Eichberger, R., Abdi, F.F., and van de Krol, R.: Grain boundaries limit the charge carrier transport in pulsed laser deposited α-SnWO4 thin film photoabsorbers. ACS Appl. Energy Mater. 3, 43204330 (2020).CrossRefGoogle Scholar
Kim, M., Lee, B., Ju, H., Kim, J.Y., Kim, J., and Lee, S.W.: Oxygen-vacancy-introduced BaSnO3−δ photoanodes with tunable band structures for efficient solar-driven water splitting. Adv. Mater. 31, 1903316 (2019).CrossRefGoogle Scholar
Zhou, L., Shinde, A., Guevarra, D., Haber, J.A., Persson, K.A., Neaton, J.B., and Gregoire, J.M.: Successes and opportunities for discovery of metal oxide photoanodes for solar fuels generators. ACS Energy Lett. 5, 14131421 (2020).CrossRefGoogle Scholar
Zhou, L., Shinde, A., Guevarra, D., Richter, M.H., Stein, H.S., Wang, Y., Newhouse, P.F., Persson, K.A., and Gregoire, J.M.: Combinatorial screening yields discovery of 29 metal oxide photoanodes for solar fuel generation. J. Mater. Chem. A 8, 42394243 (2020).CrossRefGoogle Scholar
Lhermitte, C.R. and Sivula, K.: Alternative oxidation reactions for solar-driven fuel production. ACS Catal. 9, 20072017 (2019).CrossRefGoogle Scholar
Wang, G., Ling, Y., Lu, X., Wang, H., Qian, F., Tong, Y., and Li, Y.: Solar driven hydrogen releasing from urea and human urine. Energy Environ. Sci. 5, 82158219 (2012).CrossRefGoogle Scholar
Kim, S., Piao, G., Han, D.S., Shon, H.K., and Park, H.: Solar desalination coupled with water remediation and molecular hydrogen production: A novel solar water-energy nexus. Energy Environ. Sci. 11, 344353 (2018).CrossRefGoogle Scholar
Cha, H.G. and Choi, K.-S.: Combined biomass valorization and hydrogen production in a photoelectrochemical cell. Nat. Chem. 7, 328333 (2015).CrossRefGoogle Scholar
Rollinson, A.N., Jones, J., Dupont, V., and Twigg, M.V.: Urea as a hydrogen carrier: A perspective on its potential for safe, sustainable and long-term energy supply. Energy Environ. Sci. 4, 12161224 (2011).CrossRefGoogle Scholar
Urbańczyk, E., Sowa, M., and Simka, W.: Urea removal from aqueous solutions—A review. J. Appl. Electrochem. 46, 10111029 (2016).CrossRefGoogle Scholar
Boggs, B.K., King, R.L., and Botte, G.G.: Urea electrolysis: Direct hydrogen production from urine. Chem. Commun. 32, 48594861 (2009).CrossRefGoogle Scholar
Loget, G., Mériadec, C., Dorcet, V., Fabre, B., Vacher, A., Fryars, S., and Ababou-Girard, S.: Tailoring the photoelectrochemistry of catalytic metal-insulator-semiconductor (MIS) photoanodes by a dissolution method. Nat. Commun. 10, 3522 (2019).CrossRefGoogle ScholarPubMed
Xu, D., Fu, Z., Wang, D., Lin, Y., Sun, Y., Meng, D., and Xie, T.f.: A Ni(OH)2-modified Ti-doped α-Fe2O3 photoanode for improved photoelectrochemical oxidation of urea: The role of Ni(OH)2 as a cocatalyst. Phys. Chem. Chem. Phys. 17, 2392423930 (2015).CrossRefGoogle ScholarPubMed
Liu, J., Li, J., Shao, M., and Wei, M.: Directed synthesis of SnO2@BiVO4/Co-Pi photoanode for highly efficient photoelectrochemical water splitting and urea oxidation. J. Mater. Chem. A 7, 63276336 (2019).CrossRefGoogle Scholar
Beranek, R.: Selectivity of chemical conversions: Do light-driven photoelectrocatalytic processes hold special promise? Angew. Chem. Int. Ed. 58, 1672416729 (2019).CrossRefGoogle ScholarPubMed
Dotan, H., Sivula, K., Grätzel, M., Rothschild, A., and Warren, S.C.: Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger. Energy Environ. Sci. 4, 958964 (2011).CrossRefGoogle Scholar
Klotz, D., Grave, D.A., and Rothschild, A.: Accurate determination of the charge transfer efficiency of photoanodes for solar water splitting. Phys. Chem. Chem. Phys. 19, 2038320392 (2017).CrossRefGoogle ScholarPubMed
Iandolo, B., Wickman, B., Svensson, E., Paulsson, D., and Hellman, A.: Tailoring charge recombination in photoelectrodes using oxide nanostructures. Nano Lett. 16, 23812386 (2016).CrossRefGoogle ScholarPubMed
Rambabu, Y., Jaiswal, M., and Roy, S.C.: Probing the charge recombination in rGO decorated mixed phase (anatase-rutile) TiO2 multi-leg nanotubes. AIP Adv. 6, 115010 (2016).CrossRefGoogle Scholar
Klotz, D., Ellis, D.S., Dotan, H., and Rothschild, A.: Empirical in operando analysis of the charge carrier dynamics in hematite photoanodes by PEIS, IMPS and IMVS. Phys. Chem. Chem. Phys. 18, 2343823457 (2016).CrossRefGoogle ScholarPubMed
Upul Wijayantha, K.G., Saremi-Yarahmadi, S., and Peter, L.M.: Kinetics of oxygen evolution at α-Fe2O3 photoanodes: A study by photoelectrochemical impedance spectroscopy. Phys. Chem. Chem. Phys. 13, 52645270 (2011).CrossRefGoogle ScholarPubMed
Zandi, O. and Hamann, T.W.: Determination of photoelectrochemical water oxidation intermediates on haematite electrode surfaces using operando infrared spectroscopy. Nat. Chem. 8, 778783 (2016).CrossRefGoogle ScholarPubMed
Klahr, B., Gimenez, S., Fabregat-Santiago, F., Hamann, T., and Bisquert, J.: Water oxidation at hematite photoelectrodes: The role of surface states. J. Am. Chem. Soc. 134, 42944302 (2012).CrossRefGoogle ScholarPubMed
Tang, P. and Arbiol, J.: Engineering surface states of hematite based photoanodes for boosting photoelectrochemical water splitting. Nanoscale Horiz. 4, 12561276 (2019).CrossRefGoogle Scholar
Mesa, C.A., Francàs, L., Yang, K.R., Garrido-Barros, P., Pastor, E., Ma, Y., Kafizas, A., Rosser, T.E., Mayer, M.T., Reisner, E., Grätzel, M., Batista, V.S., and Durrant, J.R.: Multihole water oxidation catalysis on haematite photoanodes revealed by operando spectroelectrochemistry and DFT. Nat. Chem. 12, 8289 (2020).CrossRefGoogle ScholarPubMed
Sinkkonen, J., Ruokolainen, J., Uotila, P., and Hovinen, A.: Spatial collection efficiency of a solar cell. Appl. Phys. Lett. 66, 206208 (1995).CrossRefGoogle Scholar
Pang, Y.T., Efstathiadis, H., Dwyer, D., and Eisaman, M.D. (2015) Reconstruction of the charge collection probability in a CIGS solar cell by the regularization method. 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), pp. 14.CrossRefGoogle Scholar
Segev, G., Jiang, C.-M., Cooper, J.K., Eichhorn, J., Toma, F.M., and Sharp, I.D.: Quantification of the loss mechanisms in emerging water splitting photoanodes through empirical extraction of the spatial charge collection efficiency. Energy Environ. Sci. 11, 904913 (2018).CrossRefGoogle Scholar
Deng, J., Zhang, Q., Lv, X., Zhang, D., Xu, H., Ma, D., and Zhong, J.: Understanding photoelectrochemical water oxidation with X-ray absorption spectroscopy. ACS Energy Lett. 5, 975993 (2020).CrossRefGoogle Scholar
Yoshida, M., Yomogida, T., Mineo, T., Nitta, K., Kato, K., Masuda, T., Nitani, H., Abe, H., Takakusagi, S., Uruga, T., Asakura, K., Uosaki, K., and Kondoh, H.: In situ observation of carrier transfer in the Mn-oxide/Nb:SrTiO3 photoelectrode by X-ray absorption spectroscopy. Chem. Commun. 49, 78487850 (2013).CrossRefGoogle ScholarPubMed
Minguzzi, A., Naldoni, A., Lugaresi, O., Achilli, E., D'Acapito, F., Malara, F., Locatelli, C., Vertova, A., Rondinini, S., and Ghigna, P.: Observation of charge transfer cascades in α-Fe2O3/IrOx photoanodes by operando X-ray absorption spectroscopy. Phys. Chem. Chem. Phys. 19, 57155720 (2017).CrossRefGoogle ScholarPubMed
Baran, T., Wojtyła, S., Lenardi, C., Vertova, A., Ghigna, P., Achilli, E., Fracchia, M., Rondinini, S., and Minguzzi, A.: An efficient CuxO photocathode for hydrogen production at neutral pH: New insights from combined spectroscopy and electrochemistry. ACS Appl. Mater. Interfaces 8, 2125021260 (2016).CrossRefGoogle ScholarPubMed
Braun, A., Sivula, K., Bora, D.K., Zhu, J., Zhang, L., Grätzel, M., Guo, J., and Constable, E.C.: Direct observation of two electron holes in a hematite photoanode during photoelectrochemical water splitting. J. Phys. Chem. C 116, 1687016875 (2012).CrossRefGoogle Scholar
Yoshida, M., Yomogida, T., Mineo, T., Nitta, K., Kato, K., Masuda, T., Nitani, H., Abe, H., Takakusagi, S., Uruga, T., Asakura, K., Uosaki, K., and Kondoh, H.: Photoexcited hole transfer to a MnOx cocatalyst on a SrTiO3 photoelectrode during oxygen evolution studied by in situ X-ray absorption spectroscopy. J. Phys. Chem. C 118, 2430224309 (2014).CrossRefGoogle Scholar
Li, L., Yang, J., Ali-Löytty, H., Weng, T.-C., Toma, F.M., Sokaras, D., Sharp, I.D., and Nilsson, A.: Operando observation of chemical transformations of iridium oxide during photoelectrochemical water oxidation. ACS Appl. Energy Mater. 2, 13711379 (2019).CrossRefGoogle Scholar
Minguzzi, A., Lugaresi, O., Achilli, E., Locatelli, C., Vertova, A., Ghigna, P., and Rondinini, S.: Observing the oxidation state turnover in heterogeneous iridium-based water oxidation catalysts. Chem. Sci. 5, 35913597 (2014).CrossRefGoogle Scholar
Minguzzi, A., Locatelli, C., Lugaresi, O., Achilli, E., Cappelletti, G., Scavini, M., Coduri, M., Masala, P., Sacchi, B., Vertova, A., Ghigna, P., and Rondinini, S.: Easy accommodation of different oxidation states in iridium oxide nanoparticles with different hydration degree as water oxidation electrocatalysts. ACS Catal. 5, 51045115 (2015).CrossRefGoogle Scholar
Xi, L., Schwanke, C., Zhou, D., Drevon, D., van de Krol, R., and Lange, K.M.: In situ XAS study of CoBi modified hematite photoanodes. Dalton Trans. 46, 1571915726 (2017).CrossRefGoogle ScholarPubMed
Xi, L., Wang, F., Schwanke, C., Abdi, F.F., Golnak, R., Fiechter, S., Ellmer, K., van de Krol, R., and Lange, K.M.: In situ structural study of MnPi-modified BiVO4 photoanodes by soft X-ray absorption spectroscopy. J. Phys. Chem. C 121, 1966819676 (2017).CrossRefGoogle Scholar
Fracchia, M., Ghigna, P., Vertova, A., Rondinini, S., and Minguzzi, A.: Time-resolved X-ray absorption spectroscopy in (photo)electrochemistry. Surfaces 1, 138150 (2018).CrossRefGoogle Scholar
Minguzzi, A., Lugaresi, O., Locatelli, C., Rondinini, S., D'Acapito, F., Achilli, E., and Ghigna, P.: Fixed energy X-ray absorption voltammetry. Anal. Chem. 85, 70097013 (2013).CrossRefGoogle ScholarPubMed
Rondinini, S., Lugaresi, O., Achilli, E., Locatelli, C., Minguzzi, A., Vertova, A., Ghigna, P., and Comninellis, C.: Fixed energy X-ray absorption voltammetry and extended X-ray absorption fine structure of Ag nanoparticle electrodes. J. Electroanal. Chem. 766, 7177 (2016).CrossRefGoogle Scholar
Baran, T., Fracchia, M., Vertova, A., Achilli, E., Naldoni, A., Malara, F., Rossi, G., Rondinini, S., Ghigna, P., Minguzzi, A., and D'Acapito, F.: Operando and time-resolved X-ray absorption spectroscopy for the study of photoelectrode architectures. Electrochim. Acta 207, 1621 (2016).CrossRefGoogle Scholar
Fracchia, M., Cristino, V., Vertova, A., Rondinini, S., Caramori, S., Ghigna, P., and Minguzzi, A.: Operando X-ray absorption spectroscopy of WO3 photoanodes. Electrochim. Acta 320, 134561 (2019).CrossRefGoogle Scholar
Clark, A.H., Steiger, P., Bornmann, B., Hitz, S., Frahm, R., Ferri, D., and Nachtegaal, M.: Fluorescence-detected quick-scanning X-ray absorption spectroscopy. J. Synchrotron Radiat. 27, 681688 (2020).CrossRefGoogle ScholarPubMed
Rittmann-Frank, M.H., Milne, C.J., Rittmann, J., Reinhard, M., Penfold, T.J., and Chergui, M.: Mapping of the photoinduced electron traps in TiO2 by picosecond X-ray absorption spectroscopy. Angew. Chem. Int. Ed. 53, 58585862 (2014).CrossRefGoogle ScholarPubMed
Kraus, P.M., Zürch, M., Cushing, S.K., Neumark, D.M., and Leone, S.R.: The ultrafast X-ray spectroscopic revolution in chemical dynamics. Nat. Rev. Chem. 2, 8294 (2018).CrossRefGoogle Scholar
Cushing, S.K., Porter, I.J., de Roulet, B.R., Lee, A., Marsh, B.M., Szoke, S., Vaida, M.E., and Leone, S.R.: Layer-resolved ultrafast extreme ultraviolet measurement of hole transport in a Ni-TiO2-Si photoanode. Sci. Adv. 6, eaay6650 (2020).CrossRefGoogle Scholar
Stolow, A., Bragg, A.E., and Neumark, D.M.: Femtosecond time-resolved photoelectron spectroscopy. Chem. Rev. 104, 17191758 (2004).CrossRefGoogle ScholarPubMed
Berera, R., van Grondelle, R., and Kennis, J.T.M.: Ultrafast transient absorption spectroscopy: Principles and application to photosynthetic systems. Photosynth. Res. 101, 105118 (2009).CrossRefGoogle ScholarPubMed
Kafizas, A., Godin, R., and Durrant, J.R.: Chapter one – Charge carrier dynamics in metal oxide photoelectrodes for water oxidation. In Semiconductors and Semimetals, Mi, Z. Wang, L. and Jagadish, C., eds. (Elsevier, New York, 2017); pp. 346.Google Scholar
Pendlebury, S.R., Wang, X., Le Formal, F., Cornuz, M., Kafizas, A., Tilley, S.D., Grätzel, M., and Durrant, J.R.: Ultrafast charge carrier recombination and trapping in hematite photoanodes under applied bias. J. Am. Chem. Soc. 136, 98549857 (2014).CrossRefGoogle ScholarPubMed
Pankove, J.I.: Optical Processes in Semiconductors (Dover Publications, New York, 2012).Google Scholar
Barroso, M., Mesa, C.A., Pendlebury, S.R., Cowan, A.J., Hisatomi, T., Sivula, K., Grätzel, M., Klug, D.R., and Durrant, J.R.: Dynamics of photogenerated holes in surface modified α-Fe2O3 photoanodes for solar water splitting. Proc. Natl. Acad. Sci. USA 109, 1564015645 (2012).CrossRefGoogle ScholarPubMed
Barreca, D., Carraro, G., Gasparotto, A., Maccato, C., Warwick, M.E.A., Kaunisto, K., Sada, C., Turner, S., Gönüllü, Y., Ruoko, T.-P., Borgese, L., Bontempi, E., Van Tendeloo, G., Lemmetyinen, H., and Mathur, S.: Fe2O3–TiO2 nano-heterostructure photoanodes for highly efficient solar water oxidation. Adv. Mater. Interfaces 2, 1500313 (2015).CrossRefGoogle Scholar
Barroso, M., Cowan, A.J., Pendlebury, S.R., Grätzel, M., Klug, D.R., and Durrant, J.R.: The role of cobalt phosphate in enhancing the photocatalytic activity of α-Fe2O3 toward water oxidation. J. Am. Chem. Soc. 133, 1486814871 (2011).CrossRefGoogle ScholarPubMed
Baxter, J.B., Richter, C., and Schmuttenmaer, C.A.: Ultrafast carrier dynamics in nanostructures for solar fuels. Annu. Rev. Phys. Chem. 65, 423447 (2014).CrossRefGoogle ScholarPubMed
Boschloo, G. and Hagfeldt, A.: Photoinduced absorption spectroscopy as a tool in the study of dye-sensitized solar cells. Inorg. Chim. Acta 361, 729734 (2008).CrossRefGoogle Scholar
Tamaki, Y., Furube, A., Murai, M., Hara, K., Katoh, R., and Tachiya, M.: Direct observation of reactive trapped holes in TiO2 undergoing photocatalytic oxidation of adsorbed alcohols: Evaluation of the reaction rates and yields. J. Am. Chem. Soc. 128, 416417 (2006).CrossRefGoogle ScholarPubMed
Zhang, L., Mohamed, H.H., Dillert, R., and Bahnemann, D.: Kinetics and mechanisms of charge transfer processes in photocatalytic systems: A review. J. Photochem. Photobiol. C 13, 263276 (2012).CrossRefGoogle Scholar
Kafizas, A., Wang, X., Pendlebury, S.R., Barnes, P., Ling, M., Sotelo-Vazquez, C., Quesada-Cabrera, R., Li, C., Parkin, I.P., and Durrant, J.R.: Where do photogenerated holes Go in anatase:rutile TiO2? A transient absorption spectroscopy study of charge transfer and lifetime. J. Phys. Chem. A 120, 715723 (2016).CrossRefGoogle ScholarPubMed
Reynal, A., Lakadamyali, F., Gross, M.A., Reisner, E., and Durrant, J.R.: Parameters affecting electron transfer dynamics from semiconductors to molecular catalysts for the photochemical reduction of protons. Energy Environ. Sci. 6, 32913300 (2013).CrossRefGoogle Scholar
Cowan, A.J., Tang, J., Leng, W., Durrant, J.R., and Klug, D.R.: Water splitting by nanocrystalline TiO2 in a complete photoelectrochemical cell exhibits efficiencies limited by charge recombination. J. Phys. Chem. C 114, 42084214 (2010).CrossRefGoogle Scholar
Pesci, F.M., Wang, G., Klug, D.R., Li, Y., and Cowan, A.J.: Efficient suppression of electron–hole recombination in oxygen-deficient hydrogen-treated TiO2 nanowires for photoelectrochemical water splitting. J. Phys. Chem. C 117, 2583725844 (2013).CrossRefGoogle ScholarPubMed
Le Formal, F., Pendlebury, S.R., Cornuz, M., Tilley, S.D., Grätzel, M., and Durrant, J.R.: Back electron–hole recombination in hematite photoanodes for water splitting. J. Am. Chem. Soc. 136, 25642574 (2014).CrossRefGoogle ScholarPubMed
Pendlebury, S.R., Cowan, A.J., Barroso, M., Sivula, K., Ye, J., Grätzel, M., Klug, D.R., Tang, J., and Durrant, J.R.: Correlating long-lived photogenerated hole populations with photocurrent densities in hematite water oxidation photoanodes. Energy Environ. Sci. 5, 63046312 (2012).CrossRefGoogle Scholar
Appavoo, K., Liu, M., Black, C.T., and Sfeir, M.Y.: Quantifying bulk and surface recombination processes in nanostructured water splitting photocatalysts via in situ ultrafast spectroscopy. Nano Lett. 15, 10761082 (2015).CrossRefGoogle ScholarPubMed
Appavoo, K., Liu, M., and Sfeir, M.Y.: Role of size and defects in ultrafast broadband emission dynamics of ZnO nanostructures. Appl. Phys. Lett. 104, 133101 (2014).CrossRefGoogle Scholar
Pesci, F.M., Cowan, A.J., Alexander, B.D., Durrant, J.R., and Klug, D.R.: Charge carrier dynamics on mesoporous WO3 during water splitting. J. Phys. Chem. Lett. 2, 19001903 (2011).CrossRefGoogle Scholar
Ma, Y., Pendlebury, S.R., Reynal, A., Le Formal, F., and Durrant, J.R.: Dynamics of photogenerated holes in undoped BiVO4 photoanodes for solar water oxidation. Chem. Sci. 5, 29642973 (2014).CrossRefGoogle Scholar
Le Formal, F., Pastor, E., Tilley, S.D., Mesa, C.A., Pendlebury, S.R., Grätzel, M., and Durrant, J.R.: Rate law analysis of water oxidation on a hematite surface. J. Am. Chem. Soc. 137, 66296637 (2015).CrossRefGoogle ScholarPubMed
Ma, Y., Mesa, C.A., Pastor, E., Kafizas, A., Francàs, L., Le Formal, F., Pendlebury, S.R., and Durrant, J.R.: Rate law analysis of water oxidation and hole scavenging on a BiVO4 photoanode. ACS Energy Lett. 1, 618623 (2016).CrossRefGoogle Scholar
Kafizas, A., Ma, Y., Pastor, E., Pendlebury, S.R., Mesa, C., Francàs, L., Le Formal, F., Noor, N., Ling, M., Sotelo-Vazquez, C., Carmalt, C.J., Parkin, I.P., and Durrant, J.R.: Water oxidation kinetics of accumulated holes on the surface of a TiO2 photoanode: A rate law analysis. ACS Catal. 7, 48964903 (2017).CrossRefGoogle Scholar
Ma, Y., Kafizas, A., Pendlebury, S.R., Le Formal, F., and Durrant, J.R.: Photoinduced absorption spectroscopy of CoPi on BiVO4: The function of CoPi during water oxidation. Adv. Funct. Mater. 26, 49514960 (2016).CrossRefGoogle Scholar
Chen, X., Choing, S.N., Aschaffenburg, D.J., Pemmaraju, C.D., Prendergast, D., and Cuk, T.: The formation time of Ti–O and Ti–O–Ti radicals at the n-SrTiO3/aqueous interface during photocatalytic water oxidation. J. Am. Chem. Soc. 139, 18301841 (2017).CrossRefGoogle ScholarPubMed
Memming, R.: Semiconductor Electrochemistry, 2nd ed. (Wiley-VCH-Verl, 2015), Weinheim.Google Scholar
In Impedance Spectroscopy: Theory, Experiment, and Applications, Barsoukov, E. and Macdonald, J.R., eds. (Wiley-Interscience, 2005), Hoboken, NJ.CrossRefGoogle Scholar
Schefold, J.: Impedance and intensity modulated photocurrent spectroscopy as complementary differential methods in photoelectrochemistry. J. Electroanal. Chem. 341, 111136 (1992).CrossRefGoogle Scholar
Peter, L.M.: Dynamic aspects of semiconductor photoelectrochemistry. Chem. Rev. 90, 753769 (1990).CrossRefGoogle Scholar
Klotz, D.: Characterization and Modeling of Electrochemical Energy Conversion Systems by Impedance Techniques (Schriften des Instituts für Werkstoffe der Elektrotechnik, Karlsruher Institut für Technologie; KIT Scientific Publ, 2012), Karlsruhe.Google Scholar
Cummings, C.Y., Marken, F., Peter, L.M., Upul Wijayantha, K.G., and Tahir, A.A.: New insights into water splitting at mesoporous α-Fe2O3 films: A study by modulated transmittance and impedance spectroscopies. J. Am. Chem. Soc. 134, 12281234 (2012).CrossRefGoogle ScholarPubMed
Klahr, B., Gimenez, S., Fabregat-Santiago, F., Bisquert, J., and Hamann, T.W.: Electrochemical and photoelectrochemical investigation of water oxidation with hematite electrodes. Energy Environ. Sci. 5, 76267636 (2012).CrossRefGoogle Scholar
Bertoluzzi, L. and Bisquert, J.: Equivalent circuit of electrons and holes in thin semiconductor films for photoelectrochemical water splitting applications. J. Phys. Chem. Lett. 3, 25172522 (2012).CrossRefGoogle ScholarPubMed
Lopes, T., Andrade, L., Le Formal, F., Gratzel, M., Sivula, K., and Mendes, A.: Hematite photoelectrodes for water splitting: evaluation of the role of film thickness by impedance spectroscopy. Phys. Chem. Chem. Phys. 16, 1651516523 (2014).CrossRefGoogle ScholarPubMed
Zandi, O., Schon, A.R., Hajibabaei, H., and Hamann, T.W.: Enhanced charge separation and collection in high-performance electrodeposited hematite films. Chem. Mater. 28, 765771 (2016).CrossRefGoogle Scholar
Gurudayal, C.P.M., Boix, P.P., Ge, H., Yanan, F., Barber, J., and Wong, L.H.: Core–shell hematite nanorods: A simple method to improve the charge transfer in the photoanode for photoelectrochemical Water Splitting. ACS Appl. Mater. Interfaces 7, 68526859 (2015).CrossRefGoogle ScholarPubMed
Malara, F., Minguzzi, A., Marelli, M., Morandi, S., Psaro, R., Dal Santo, V., and Naldoni, A.: α-Fe2O3/NiOOH: An effective heterostructure for photoelectrochemical water oxidation. ACS Catal. 5, 52925300 (2015).CrossRefGoogle Scholar
George, K., van Berkel, M., Zhang, X., Sinha, R., and Bieberle-Hütter, A.: Impedance spectra and surface coverages simulated directly from the electrochemical reaction mechanism: A nonlinear state-space approach. J. Phys. Chem. C 123, 99819992 (2019).CrossRefGoogle Scholar
Zachäus, C., Abdi, F.F., Peter, L.M., and van de Krol, R.: Photocurrent of BiVO4 is limited by surface recombination, not surface catalysis. Chem. Sci. 8, 37123719 (2017).CrossRefGoogle Scholar
Ponomarev, E.A. and Peter, L.M.: A generalized theory of intensity modulated photocurrent spectroscopy (IMPS). J. Electroanal. Chem. 396, 219226 (1995).CrossRefGoogle Scholar
Dunn, H.K., Feckl, J.M., Müller, A., Fattakhova-Rohlfing, D., Morehead, S.G., Roos, J., Peter, L.M., Scheu, C., and Bein, T.: Tin doping speeds up hole transfer during light-driven water oxidation at hematite photoanodes. Phys. Chem. Chem. Phys. 16, 2461024620 (2014).CrossRefGoogle ScholarPubMed
Yalavarthi, R., Naldoni, A., Kment, Š, Mascaretti, L., Kmentová, H., Tomanec, O., Schmuki, P., and Zbořil, R.: Radiative and non-radiative recombination pathways in mixed-phase TiO2 nanotubes for PEC water-splitting. Catalysts 9, 204 (2019).CrossRefGoogle Scholar
Thorne, J.E., Jang, J.-W., Liu, E.Y., and Wang, D.: Understanding the origin of photoelectrode performance enhancement by probing surface kinetics. Chem. Sci. 7, 33473354 (2016).CrossRefGoogle ScholarPubMed
Tsyganok, A., Klotz, D., Malviya, K.D., Rothschild, A., and Grave, D.A.: Different roles of Fe1–xNixOOH cocatalyst on hematite (α-Fe2O3) photoanodes with different dopants. ACS Catal. 8, 27542759 (2018).CrossRefGoogle Scholar
Makimizu, Y., Nguyen, N.T., Tucek, J., Ahn, H.-J., Yoo, J., Poornajar, M., Hwang, I., Kment, S., and Schmuki, P.: Activation of α-Fe2O3 for photoelectrochemical water splitting strongly enhanced by low temperature annealing in low oxygen containing ambient. Chem. Eur. J. 26, 26852692 (2020).CrossRefGoogle Scholar
Liu, E.Y., Thorne, J.E., He, Y., and Wang, D.: Understanding photocharging effects on bismuth vanadate. ACS Appl. Mater. Interfaces 9, 2208322087 (2017).CrossRefGoogle ScholarPubMed
Rodríguez-Gutiérrez, I., Djatoubai, E., Rodríguez-Pérez, M., Su, J., Rodríguez-Gattorno, G., Vayssieres, L., and Oskam, G.: Photoelectrochemical water oxidation at FTOWO3@CuWO4 and FTOWO3@CuWO4BiVO4 heterojunction systems: An IMPS analysis. Electrochim. Acta 308, 317327 (2019).CrossRefGoogle Scholar
Yu, F., Li, F., Yao, T., Du, J., Liang, Y., Wang, Y., Han, H., and Sun, L.: Fabrication and kinetic study of a ferrihydrite-modified BiVO4 photoanode. ACS Catal. 7, 18681874 (2017).CrossRefGoogle Scholar
Liu, G., Ye, S., Yan, P., Xiong, F., Fu, P., Wang, Z., Chen, Z., Shi, J., and Li, C.: Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting. Energy Environ. Sci. 9, 13271334 (2016).CrossRefGoogle Scholar
Han, S.G., Chae, S.Y., Lee, S.Y., Min, B.K., and Hwang, Y.J.: Charge separation properties of Ta3N5 photoanodes synthesized via a simple metal–organic-precursor decomposition process. Phys. Chem. Chem. Phys. 20, 28652871 (2018).CrossRefGoogle Scholar
Cottineau, T., Cachet, H., Keller, V., and Sutter, E.M.M.: Influence of the anatase/rutile ratio on the charge transport properties of TiO2-NTs arrays studied by dual wavelength opto-electrochemical impedance spectroscopy. Phys. Chem. Chem. Phys. 19, 3146931478 (2017).CrossRefGoogle ScholarPubMed
Cachet, H. and Sutter, E.M.M.: Kinetics of water oxidation at TiO2 nanotube arrays at different pH domains investigated by electrochemical and light-modulated impedance spectroscopy. J. Phys. Chem. C 119, 2554825558 (2015).CrossRefGoogle Scholar
Nellist, M.R., Chen, Y., Mark, A., Gödrich, S., Stelling, C., Jiang, J., Poddar, R., Li, C., Kumar, R., Papastavrou, G., Retsch, M., Brunschwig, B.S., Huang, Z., Xiang, C., and Boettcher, S.W.: Atomic force microscopy with nanoelectrode tips for high resolution electrochemical, nanoadhesion and nanoelectrical imaging. Nanotechnology 28, 095711 (2017).CrossRefGoogle ScholarPubMed
Mills, T.J., Lin, F., and Boettcher, S.W.: Theory and simulations of electrocatalyst-coated semiconductor electrodes for solar water splitting. Phys. Rev. Lett. 112, 148304 (2014).CrossRefGoogle ScholarPubMed
Lin, F. and Boettcher, S.W.: Adaptive semiconductor/electrocatalyst junctions in water-splitting photoanodes. Nat. Mater. 13, 8186 (2014).CrossRefGoogle ScholarPubMed
Klahr, B., Gimenez, S., Fabregat-Santiago, F., Bisquert, J., and Hamann, T.W.: Photoelectrochemical and Impedance spectroscopic investigation of water oxidation with “Co–Pi”-coated hematite electrodes. J. Am. Chem. Soc. 134, 1669316700 (2012).CrossRefGoogle ScholarPubMed
Li, L., Yang, X., Lei, Y., Yu, H., Yang, Z., Zheng, Z., and Wang, D.: Ultrathin Fe-NiO nanosheets as catalytic charge reservoirs for a planar Mo-doped BiVO4 photoanode. Chem. Sci. 9, 88608870 (2018).CrossRefGoogle ScholarPubMed
Carroll, G.M. and Gamelin, D.R.: Kinetic analysis of photoelectrochemical water oxidation by mesostructured Co-Pi/α-Fe2O3 photoanodes. J. Mater. Chem. A 4, 29862994 (2016).CrossRefGoogle Scholar
Li, W., He, D., Sheehan, S.W., He, Y., Thorne, J.E., Yao, X., Brudvig, G.W., and Wang, D.: Comparison of heterogenized molecular and heterogeneous oxide catalysts for photoelectrochemical water oxidation. Energy Environ. Sci. 9, 17941802 (2016).CrossRefGoogle Scholar
de Respinis, M., Joya, K.S., De Groot, H.J.M., D'Souza, F., Smith, W.A., van de Krol, R., and Dam, B.: Solar water splitting combining a BiVO4 light absorber with a Ru-based molecular cocatalyst. J. Phys. Chem. C 119, 72757281 (2015).CrossRefGoogle Scholar
Laskowski, F.A.L., Nellist, M.R., Qiu, J., and Boettcher, S.W.: Metal oxide/(oxy)hydroxide overlayers as hole collectors and oxygen-evolution catalysts on water-splitting photoanodes. J. Am. Chem. Soc. 141, 13941405 (2019).CrossRefGoogle ScholarPubMed
Nellist, M.R., Laskowski, F.A.L., Lin, F., Mills, T.J., and Boettcher, S.W.: Semiconductor–electrocatalyst interfaces: Theory, experiment, and applications in photoelectrochemical water splitting. Acc. Chem. Res. 49, 733740 (2016).CrossRefGoogle ScholarPubMed
Nellist, M.R., Qiu, J., Laskowski, F.A.L., Toma, F.M., and Boettcher, S.W.: Potential-sensing electrochemical AFM shows CoPi as a hole collector and oxygen evolution catalyst on BiVO4 water-splitting photoanodes. ACS Energy Lett. 3, 22862291 (2018).CrossRefGoogle Scholar
Laskowski, F.A.L., Nellist, M.R., Venkatkarthick, R., and Boettcher, S.W.: Junction behavior of n-Si photoanodes protected by thin Ni elucidated from dual working electrode photoelectrochemistry. Energy Environ. Sci. 10, 570579 (2017).CrossRefGoogle Scholar
Qiu, J., Hajibabaei, H., Nellist, M.R., Laskowski, F.A.L., Oener, S.Z., Hamann, T.W., and Boettcher, S.W.: Catalyst deposition on photoanodes: The roles of intrinsic catalytic activity, catalyst electrical conductivity, and semiconductor morphology. . ACS Energy Lett. 3, 961969 (2018).CrossRefGoogle Scholar
Qiu, J., Hajibabaei, H., Nellist, M.R., Laskowski, F.A.L., Hamann, T.W., and Boettcher, S.W.: Direct in situ measurement of charge transfer processes during photoelectrochemical water oxidation on catalyzed hematite. ACS Cent. Sci. 3, 10151025 (2017).CrossRefGoogle ScholarPubMed
Nellist, M.R., Laskowski, F.A.L., Qiu, J., Hajibabaei, H., Sivula, K., Hamann, T.W., and Boettcher, S.W.: Potential-sensing electrochemical atomic force microscopy for in operando analysis of water-splitting catalysts and interfaces. Nat. Energy 3, 4652 (2018).CrossRefGoogle Scholar
Laskowski, F.A.L., Oener, S.Z., Nellist, M.R., Gordon, A.M., Bain, D.C., Fehrs, J.L., and Boettcher, S.W.: Nanoscale semiconductor/catalyst interfaces in photoelectrochemistry. Nat. Mater. 19, 6976 (2020).CrossRefGoogle ScholarPubMed
Bard, A.J., Fan, F.R.F., Kwak, J., and Lev, O.: Scanning electrochemical microscopy. Introduction and principles. Anal. Chem. 61, 132138 (1989).CrossRefGoogle Scholar
Casillas, N., James, P., and Smyrl, W.H.: A novel approach to combine scanning electrochemical microscopy and scanning photoelectrochemical microscopy. J. Electrochem. Soc. 142, L16L18 (1995).CrossRefGoogle Scholar
Harati, M., Jia, J., Giffard, K., Pellarin, K., Hewson, C., Love, D.A., Lau, W.M., and Ding, Z.: One-pot electrodeposition, characterization and photoactivity of stoichiometric copper indium gallium diselenide (CIGS) thin films for solar cells. Phys. Chem. Chem. Phys. 12, 1528215290 (2010).CrossRefGoogle ScholarPubMed
Conzuelo, F., Sliozberg, K., Gutkowski, R., Grützke, S., Nebel, M., and Schuhmann, W.: High-resolution analysis of photoanodes for water splitting by means of scanning photoelectrochemical microscopy. Anal. Chem. 89, 12221228 (2017).CrossRefGoogle ScholarPubMed
Tsionsky, M., Cardon, Z.G., Bard, A.J., and Jackson, R.B.: Photosynthetic electron transport in single guard cells as measured by scanning electrochemical microscopy. Plant Physiol. 113, 895901 (1997).CrossRefGoogle ScholarPubMed
Figgemeier, E., Kylberg, W.H., and Bozic, B.: Scanning photo-electrochemical microscopy as versatile tool to investigate dye-sensitized nano-crystalline surfaces for solar cells. Photonics Sol. Energy Syst. 6197, 619711 (2006).CrossRefGoogle Scholar
Sosa, E., Cabrera-Sierra, R., Oropeza, M.T., Hernández, F., Casillas, N., Tremont, R., Cabrera, C., and González, I.: Chemical characterization of corrosion films electrochemically grown on carbon steel in alkaline sour environment. J. Electrochem. Soc. 150, B530B535 (2003).CrossRefGoogle Scholar
Zhao, F., Conzuelo, F., Hartmann, V., Li, H., Stapf, S., Nowaczyk, M.M., Rögner, M., Plumeré, N., Lubitz, W., and Schuhmann, W.: A novel versatile microbiosensor for local hydrogen detection by means of scanning photoelectrochemical microscopy. Biosens. Bioelectron. 94, 433437 (2017).CrossRefGoogle ScholarPubMed
Kranz, C.: Recent advancements in nanoelectrodes and nanopipettes used in combined scanning electrochemical microscopy techniques. Analyst 139, 336352 (2014).CrossRefGoogle ScholarPubMed
Zhao, F., Hardt, S., Hartmann, V., Zhang, H., Nowaczyk, M.M., Rögner, M., Plumeré, N., Schuhmann, W., and Conzuelo, F.: Light-induced formation of partially reduced oxygen species limits the lifetime of photosystem 1-based biocathodes. Nat. Commun. 9, 1973 (2018).CrossRefGoogle ScholarPubMed
Ma, Y., Shinde, P.S., Li, X., and Pan, S.: High-throughput screening and surface interrogation studies of Au-modified hematite photoanodes by scanning electrochemical microscopy for solar water splitting. ACS Omega 4, 1725717268 (2019).CrossRefGoogle ScholarPubMed
Zhang, B., Zhang, X., Xiao, X., and Shen, Y.: Photoelectrochemical water splitting system—A study of interfacial charge transfer WITH scanning electrochemical microscopy. ACS Appl. Mater. Interfaces 8, 16061614 (2016).CrossRefGoogle ScholarPubMed
Rastgar, S. and Wittstock, G.: Characterization of photoactivity of nanostructured BiVO4 at polarized liquid–liquid interfaces by scanning electrochemical microscopy. J. Phys. Chem. C 121, 2594125948 (2017).CrossRefGoogle Scholar
Kim, J.Y., Ahn, H.S., and Bard, A.J.: Surface interrogation scanning electrochemical microscopy for a photoelectrochemical reaction: Water oxidation on a hematite surface. Anal. Chem. 90, 30453049 (2018).CrossRefGoogle ScholarPubMed
Bae, J.H., Nepomnyashchii, A.B., Wang, X., Potapenko, D.V., and Mirkin, M.V.: Photo-scanning electrochemical microscopy on the nanoscale with through-tip illumination. Anal. Chem. 91, 1260112605 (2019).CrossRefGoogle ScholarPubMed
Fernando, A., Parajuli, S., and Alpuche-Aviles, M.A.: Observation of individual semiconducting nanoparticle collisions by stochastic photoelectrochemical currents. J. Am. Chem. Soc. 135, 1089410897 (2013).CrossRefGoogle ScholarPubMed
Yu, Y., Sun, T., and Mirkin, M.V.: Scanning electrochemical microscopy of single spherical nanoparticles: Theory and particle size evaluation. Anal. Chem. 87, 74467453 (2015).CrossRefGoogle ScholarPubMed
Gutkowski, R., Khare, C., Conzuelo, F., Kayran, Y.U., Ludwig, A., and Schuhmann, W.: Unraveling compositional effects on the light-induced oxygen evolution in Bi(V-Mo-X)O4 material libraries. Energy Environ. Sci. 10, 12131221 (2017).CrossRefGoogle Scholar
Yu, A.-p., Chen, G., Zhang, Z.-h., Wen, Z.-q., Dai, L.-r., Zhang, K., Jiang, S.-l., Wu, Z.-x., Li, Y.-y., Wang, C.-t., and Luo, X.-g.: Creation of sub-diffraction longitudinally polarized spot by focusing radially polarized light with binary phase lens. Sci. Rep. 6, 38859 (2016).CrossRefGoogle ScholarPubMed
Badets, V., Loget, G., Garrigue, P., Sojic, N., and Zigah, D.: Combined local anodization of titanium and scanning photoelectrochemical mapping of TiO2 spot arrays. Electrochim. Acta 222, 8491 (2016).CrossRefGoogle Scholar
Yuan, D., Xiao, L., Jia, J., Zhang, J., Han, L., Li, P., Mao, B.-W., and Zhan, D.: Combinatorial screening of photoelectrocatalytic system with high signal/noise ratio. Anal. Chem. 86, 1197211976 (2014).CrossRefGoogle ScholarPubMed
Zhao, F., Hartmann, V., Ruff, A., Nowaczyk, M.M., Rögner, M., Schuhmann, W., and Conzuelo, F.: Unravelling electron transfer processes at photosystem 2 embedded in an Os-complex modified redox polymer. Electrochim. Acta 290, 451456 (2018).CrossRefGoogle Scholar
Zhao, F., Plumeré, N., Nowaczyk, M.M., Ruff, A., Schuhmann, W., and Conzuelo, F.: Interrogation of a PS1-based photocathode by means of scanning photoelectrochemical microscopy. Small 13, 1604093 (2017).CrossRefGoogle ScholarPubMed
Kimmich, D., Taffa, D.H., Dosche, C., Wark, M., and Wittstock, G.: Combinatorial screening of photoanode materials - Uniform platform for compositional arrays and macroscopic electrodes. Electrochim. Acta 259, 204212 (2018).CrossRefGoogle Scholar
Sliozberg, K., Schäfer, D., Meyer, R., Ludwig, A., and Schuhmann, W.: A combinatorial study of photoelectrochemical properties of Fe-W-O thin films. ChemPlusChem 80, 136140 (2015).CrossRefGoogle Scholar
Jang, J.S., Lee, J., Ye, H., Fan, F.R.F., and Bard, A.J.: Rapid screening of effective dopants for Fe2O3 photocatalysts with scanning electrochemical microscopy and investigation of their photoelectrochemical properties. J. Phys. Chem. C 113, 67196724 (2009).CrossRefGoogle Scholar
Liu, W., Ye, H., and Bard, A.J.: Screening of novel metal oxide photocatalysts by scanning electrochemical microscopy and research of their photoelectrochemical properties. J. Phys. Chem. C 114, 12011207 (2010).CrossRefGoogle Scholar
Park, H.S., Kweon, K.E., Ye, H., Paek, E., Hwang, G.S., and Bard, A.J.: Factors in the metal doping of BiVO4 for improved photoelectrocatalytic activity as studied by scanning electrochemical microscopy and first-principles density-functional calculation. J. Phys. Chem. C 115, 1787017879 (2011).CrossRefGoogle Scholar
Ye, H., Lee, J., Jang, J.S., and Bard, A.J.: Rapid screening of BiVO4-based photocatalysts by scanning electrochemical microscopy (SECM) and studies of their photoelectrochemical properties. J. Phys. Chem. C 114, 1332213328 (2010).CrossRefGoogle Scholar
Ye, H., Park, H.S., and Bard, A.J.: Screening of electrocatalysts for photoelectrochemical water oxidation on W-doped BiVO4 photocatalysts by scanning electrochemical microscopy. J. Phys. Chem. C 115, 1246412470 (2011).CrossRefGoogle Scholar
Zigah, D., Rodríguez-López, J., and Bard, A.J.: Quantification of photoelectrogenerated hydroxyl radical on TiO2 by surface interrogation scanning electrochemical microscopy. Phys. Chem. Chem. Phys. 14, 1276412772 (2012).CrossRefGoogle ScholarPubMed
Park, H.S., Leonard, K.C., and Bard, A.J.: Surface interrogation scanning electrochemical microscopy (SI-SECM) of photoelectrochemistry at a W/Mo-BiVO4 semiconductor electrode: Quantification of hydroxyl radicals during water oxidation. J. Phys. Chem. C 117, 1209312102 (2013).CrossRefGoogle Scholar
Nakamura, R. and Nakato, Y.: Primary intermediates of oxygen photoevolution reaction on TiO2 (rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements. J. Am. Chem. Soc. 126, 12901298 (2004).CrossRefGoogle ScholarPubMed
Zhang, M., de Respinis, M., and Frei, H.: Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst. Nat. Chem. 6, 362367 (2014).CrossRefGoogle ScholarPubMed
Heidary, N., Ly, K.H., and Kornienko, N.: Probing CO2 conversion chemistry on nanostructured surfaces with operando vibrational spectroscopy. Nano Lett. 19, 48174826 (2019).CrossRefGoogle ScholarPubMed
Zandi, O. and Hamann, T.W.: The potential versus current state of water splitting with hematite. Phys. Chem. Chem. Phys. 17, 2248522503 (2015).CrossRefGoogle ScholarPubMed
Zhang, Y., Zhang, H., Liu, A., Chen, C., Song, W., and Zhao, J.: Rate-limiting O–O bond formation pathways for water oxidation on hematite photoanode. J. Am. Chem. Soc. 140, 32643269 (2018).CrossRefGoogle ScholarPubMed
Herlihy, D.M., Waegele, M.M., Chen, X., Pemmaraju, C.D., Prendergast, D., and Cuk, T.: Detecting the oxyl radical of photocatalytic water oxidation at an n-SrTiO3/aqueous interface through its subsurface vibration. Nat. Chem. 8, 549555 (2016).CrossRefGoogle ScholarPubMed
Dotan, H., Landman, A., Sheehan, S.W., Malviya, K.D., Shter, G.E., Grave, D.A., Arzi, Z., Yehudai, N., Halabi, M., Gal, N., Hadari, N., Cohen, C., Rothschild, A., and Grader, G.S.: Decoupled hydrogen and oxygen evolution by a two-step electrochemical–chemical cycle for efficient overall water splitting. Nat. Energy 4, 786795 (2019).CrossRefGoogle Scholar
Zhang, X.Q., and Bieberle-Hütter, A.: Modeling and simulations in photoelectrochemical water oxidation: From single level to multiscale modeling. ChemSusChem 9, 12231242 (2016).CrossRefGoogle ScholarPubMed
Supplementary material: File

Yalavarthi et al. supplementary material

Figures S1-S12

Download Yalavarthi et al. supplementary material(File)
File 3.7 MB