Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T06:30:00.787Z Has data issue: false hasContentIssue false

Energy availability and energy sources as determinants of societal development in a long-term perspective

Published online by Cambridge University Press:  22 April 2015

Marina Fischer-Kowalski*
Affiliation:
Faculty for Interdisciplinary Studies, Institute of Social Ecology (SEC), Alpen-Adria University Klagenfurt-Wien-Graz, A1070 Vienna, Austria
Anke Schaffartzik
Affiliation:
Faculty for Interdisciplinary Studies, Institute of Social Ecology (SEC), Alpen-Adria University Klagenfurt-Wien-Graz, A1070 Vienna, Austria
*
*Address all correspondence to Marina Fischer-Kowalski at [email protected]
Get access

Abstract

The dominant energy sources used by human societies and the transitions from one energy source to another have fundamental implications for societal development. A future energy transition is pending but it remains unclear what its socioeconomic corollaries will be.

The history of the dominant energy sources used by human societies and their implications for societal development are traced in this review. “Passive solar energy utilization” in the hunting and gathering mode requires mobility of societies following the biomass that is their sole energy input. Fertility is constrained both by the available nutrition and by the need to migrate: population density is low. The agrarian mode relies on “active solar energy utilization”. Solar energy is harnessed through cultivated crops providing energy to humans. This mode requires a sedentary way of life and allows for much higher population density; progress in raising yields is achieved by additional labor-inputs and drives population growth. The industrial mode relies largely on fossil energy carriers supplying human societies with an amount of energy never accessible before, and with new materials. It relieves human societies of their dependence on land, fosters urban growth, and decreases fertility. At the same time, the industrial mode is based on a dominant energy source that will not be available indefinitely and that is associated with severe impacts on the environment. A future energy transition seems unavoidable and historical evidence suggests that it will be associated with fundamental socioeconomic change.

Keywords

Type
Review
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: Klagenfurt University

References

REFERENCES

McKinnon, AM.: Energy and society: Herbert Spencer’s “energetic sociology” of social evolution and beyond. J. Classical Sociol. 10, 439455 (2010). doi: 10.1177/1468795X10385184.CrossRefGoogle Scholar
Spencer, H.: First Principles. A System of Synthetic Philosophy (Williams & Norgate, London, 1862).Google Scholar
Morgan, L.H.: Ancient Society: Or, Researches in the Lines of Human Progress from Savagery, Through Barbarism to Civilization (H. Holt and Co., New York, 1877).Google Scholar
White, L.A.: Energy and the evolution of culture. Am. Anthropol. 45, 335356 (1943).CrossRefGoogle Scholar
Steward, J.H.: Theory of Culture Change: The Methodology of Multilinear Evolution (University of Illinois Press, Urbana, 1955).Google Scholar
Cottrell, F.: Energy & Society: The Relation Between Energy, Social Change, and Economic Development (AuthorHouse, Bloomington, 1955).Google Scholar
Smil, V.: General Energetics: Energy in the Biosphere and Civilization (Wiley & Sons, Oxford, UK, 1991).Google Scholar
Smil, V.: Energy in World History (Essays in World History) (Westview Press, Boulder, CO, 1994).Google Scholar
Smil, V.: Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production (MIT Press, Cambridge, USA, 2001).Google Scholar
Smil, V.: Energy at the Crossroads: Global Perspectives and Uncertainties (MIT Press, Cambridge, MA, 2005).Google Scholar
Smil, V.: Energy in Nature and Society: General Energetics of Complex Systems (MIT Press, Cambridge, MA, 2008).Google Scholar
Ayres, R.U. and Warr, B.: The Economic Growth Engine: How Energy and Work Drive Material Prosperity (Edward Elgar Publishing, Northampton, MA, 2010).Google Scholar
Smith, A.: An Inquiry into the Nature and Causes of the Wealth of Nations. (A&C Black Publishers, London, 1863).Google Scholar
Ricardo, D.: On the Principles of Political Economy and Taxation, 3rd ed. (John Murray, London, 1817).Google Scholar
Marx, K.: Capital, Vol. 1 (Penguin, London, 1867).Google Scholar
Cobb, C.W. and Douglas, P.H.: A theory of production. Am. Econ. Rev. 18, 139165 (1928).Google Scholar
Solow, R.M.: A contribution to the theory of economic growth. Q. J. Econ. 70, 6594 (1956). doi: 10.2307/1884513.Google Scholar
Cleveland, C.J., Costanza, R., Hall, C.A.S., and Kaufmann, R.: Energy and the U.S. economy: A biophysical perspective. Science 225, 890897 (1984). doi: 10.1126/science.225.4665.890.Google Scholar
Cleveland, C.J.: Natural resource scarcity and economic growth revisited: Economic and biophysical perspectives. In Ecological Economics: The Science and Management of Sustainability, Costanza, R. ed.; Columbia University Press: New York, 1992; pp. 289317.Google Scholar
Ayres, R.U. and Warr, B.: Accounting for growth: The role of physical work. Struct. Change Econ. Dynam. 16, 181209 (2005). doi: 10.1016/j.strueco.2003.10.003.Google Scholar
Hall, C.A.S. and Klitgaard, K.A.: Energy and the Wealth of Nations: Understanding the Biophysical Economy (Springer Science & Business Media, Dordrecht, Netherlands, 2011).Google Scholar
Krausmann, F., Gingrich, S., Eisenmenger, N., Erb, K-H., Haberl, H., and Fischer-Kowalski, M. Growth in global materials use, GDP and population during the 20th century. Ecol. Econ. 68, 26962705 (2009). doi: 10.1016/j.ecolecon.2009.05.007.Google Scholar
Schaffartzik, A., Mayer, A., Gingrich, S., Eisenmenger, N., Loy, C., and Krausmann, F.: The global metabolic transition: Regional patterns and trends of global material flows, 1950–2010. Global Environ. Change 26, 8797 (2014). doi: 10.1016/j.gloenvcha.2014.03.013.Google Scholar
Leach, G.: The energy transition. Energy Policy 20, 116123 (1992). doi: 10.1016/0301-4215(92)90105-B.CrossRefGoogle Scholar
Hashimoto, S., Fischer-Kowalski, M., Suh, S., and Bai, X.: Greening growing giants. J. Ind. Ecol. 16, 459466 (2012).Google Scholar
Pachauri, S. and Jiang, L.: The household energy transition in India and China. Energ. Pol. 36, 40224035 (2008). doi: 10.1016/j.enpol.2008.06.016.Google Scholar
Haberl, H., Fischer-Kowalski, M., Krausmann, F., Weisz, H., and Winiwarter, V.: Progress towards sustainability? What the conceptual framework of material and energy flow accounting (MEFA) can offer. Land Use Pol. 21, 199213 (2004). doi: 10.1016/j.landusepol.2003.10.013.CrossRefGoogle Scholar
Pallua, I.: Historische Energietransitionen im Ländervergleich. Energienutzung, Bevölkerung, Wirtschaftliche Entwicklung (Institute of Social Ecology, Vienna, 2013).Google Scholar
Warde, P.: The first industrial revolution. In Power to the People: Energy in Europe over the Last Five Centuries, Kander, A., Malanima, P., and Warde, P. eds.; Princeton University Press: Princeton, 2014; pp. 129248.Google Scholar
Gerding, M.A.W.: Canals and energy: The relationship between canals and the extraction of peat in the Netherlands 1500-1900. Peatlands International 2, 3237 (2010).Google Scholar
Sieferle, R.P., Krausmann, F., Schandl, H., and Winiwarter, V.: Das Ende der Fläche: Zum gesellschaftlichen Stoffwechsel der Industrialisierung (Böhlau Verlag, Cologne, 2006).Google Scholar
Warde, P.: Energy Consumption in England and Wales, 1560–2004 (Consiglio Nazionale della Ricerche, Naples, 2007).Google Scholar
Sieferle, R.P.: The Subterranean Forest: Energy Systems and the Industrial Revolution (The White Horse Press, Cambridge, USA, 2001).Google Scholar
Krausmann, F. and Fischer-Kowalski, M.: Global socio-metabolic transitions. In Long Term Socio-Ecological Research, Singh, S.J., Haberl, H., Chertow, M., Mirtl, M., and Schmid, M. eds.; Springer: Dordrecht, Netherlands, 2013; pp. 339365.CrossRefGoogle Scholar
Pomeranz, K.: The Great Divergence: China, Europe, and the Making of the Modern World Economy (Princeton University Press, Princeton, 2009).Google Scholar
Fischer-Kowalski, M. and Haberl, H.: Socioecological Transitions and Global Change: Trajectories of Social Metabolism and Land Use (Edward Elgar Publishing, Cheltenham, UK; Northampton, MA, 2007).CrossRefGoogle Scholar
Hubbert, M.K.: Energy Resources: A Report to the Committee on Natural Resources. National Academy of Sciences, National Research Council, Washington, D.C., 1962.Google Scholar
Campbell, C.J. and Laherrère, J.H.: The end of cheap oil. Sci. Am. 278, 6065 (1998).Google Scholar
Murphy, D.J.: Fossil fuels: Peak oil is affecting the economy already. Nature 483, 541 (2012). doi: 10.1038/483541a.CrossRefGoogle ScholarPubMed
GEA: Global Energy Assessment: Toward a Sustainable Future (IIASA and Cambridge University Press, Laxenburg and Cambridge, 2012).Google Scholar
McJeon, H., Edmonds, J., Bauer, N., Clarke, L., Fisher, B., Flannery, B.P., Hilaire, J., Krey, V., Marangoni, G., Mi, R., Riahi, K., Rogner, H., and Tavoni, M.: Limited impact on decadal-scale climate change from increased use of natural gas. Nature 514, 482485 (2014). doi: 10.1038/nature13837.Google Scholar
Meng, Q.Y. and Bentley, R.W.: Global oil peaking: Responding to the case for “abundant supplies of oil”. Energy 33, 11791184 (2008). doi: 10.1016/j.energy.2008.04.001.Google Scholar
Jackson, P.M. and Smith, L.K.: Exploring the undulating plateau: The future of global oil supply. Philos. Trans. R. Soc., A 372, 20120491 (2014). doi: 10.1098/rsta.2012.0491.Google Scholar
Meinshausen, M., Meinshausen, N., Hare, W., Raper, SCB., Frieler, K., Knutti, R., Frame, D.J., and Allen, M.R.: Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458, 11581162 (2009). doi: 10.1038/nature08017.CrossRefGoogle Scholar
Stocker, T.F., Qin, D., Plattner, G-K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.M.: Climate Change 2013, The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change (IPCC) (Cambridge University Press, Cambridge, UK; New York, USA, 2013).Google Scholar
Schellnhuber, H.J., Cramer, W.P., Nakicenovic, N., Wigley, T., and Yohe, G.: Avoiding Dangerous Climate Change (Cambridge University Press, Cambridge, USA, 2006).Google Scholar
Sieferle, R.P.: Rückblick auf die Natur. Eine Geschichte des Menschen und seiner Umwelt (Luchterhand, Munich, 1997).Google Scholar
Sieferle, R.P.: Sustainability in a world history perspective. In Exploitation and Overexploitation in Societies Past and Present, Benzig, B. ed.; LIT Publishing House: Münster, 2003; pp. 123142.Google Scholar
Fischer-Kowalski, M., Krausmann, F., and Pallua, I.: A sociometabolic reading of the Anthropocene: Modes of subsistence, population size and human impact on earth. The Anthropocene Review 1, 833 (2014). doi: 10.1177/2053019613518033.CrossRefGoogle Scholar
Wrangham, R.: Catching Fire: How Cooking Made Us Human (Basic Books, New York, 2009).Google Scholar
Vitousek, P.M., Ehrlich, P.R., Ehrlich, A.H., and Matson, P.A.: Human appropriation of the products of photosynthesis. BioScience 36, 368373 (1986). doi: 10.2307/1310258.Google Scholar
Malanima, P.: Pre-industrial economies. In Power to the People: Energy in Europe over the Last Five Centuries, Kander, A., Malanima, P., and Warde, P. eds.; Princeton University Press: Princeton, 2014; pp. 35128.Google Scholar
Goudsblom, J.: Fire and Civilization (Penguin Books, London, 1994).Google Scholar
Gill, J.L., Williams, J.W., Jackson, S.T., Lininger, K.B., and Robinson, G.S.: Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326, 11001103 (2009). doi: 10.1126/science.1179504.Google Scholar
Rule, S., Brook, B.W., Haberle, S.G., Turney, C.S.M., Kershaw, A.P., and Johnson, C.N.: The aftermath of megafaunal extinction: Ecosystem transformation in Pleistocene Australia. Science 335, 14831486 (2012). doi: 10.1126/science.1214261.Google Scholar
Ellison, P.T.: Energetics, reproductive ecology, and human evolution. PaleoAnthropology 2008, 172200 (2008).Google Scholar
Ammerman, A.J. and Cavalli-Sforza, L.L.: The Neolithic Transition and the Genetics of Populations in Europe (Princeton University Press, Princeton, 1984).Google Scholar
Lee, R.B.: Lactation ovulation infanticide and womens work: A study of hunter-gatherer population regulation. In Biosocial Mechanisms of Population Regulation, Cohen, M.N., Malpass, R.S., and Klein, H.G. eds.; Yale University Press: New Haven, 1980; pp. 321348.Google Scholar
Sahlins, M.D.: Stone Age Economics (Transaction Publishers, Hawthorne, 1972).Google Scholar
Singh, S.J., Grünbühel, C.M., Schandl, H., and Schulz, N.: Social metabolism and labour in a local context: Changing environmental relations on Trinket Island. Popul. Environ. 23, 71104 (2001). doi: 10.1023/A:1017564309651.Google Scholar
Gignoux, C.R., Henn, B.M., and Mountain, J.L.: Rapid, global demographic expansions after the origins of agriculture. Proc. Natl. Acad. Sci. U. S. A. 108, 60446049 (2011). doi: 10.1073/pnas.0914274108.Google Scholar
Flannery, T.: So varied in detail—So similar in outline. In Limited Wants, Unlimited Means: A Reader on Hunter-Gatherer Economics and the Environment, Gowdy, J. ed.; Island Press: Washington, D.C., 1997; pp. 237254.Google Scholar
Crosby, A.W.: Ecological Imperialism: The Biological Expansion of Europe, 900–1900 (Cambridge University Press, Cambridge, USA, 1986).Google Scholar
Diamond, J.: Collapse: How Societies Choose to Fail or Succeed (Viking: New York, 2005).Google Scholar
Tainter, J. The Collapse of Complex Societies (Cambridge University Press, Cambridge, USA, 1988).Google Scholar
Boserup, E.: Population and Technological Change: A Study of Long-Term Trends (University of Chicago Press, Chicago, 1981).Google Scholar
Cussó, X., Garrabou, R., and Tello, E.: Social metabolism in an agrarian region of Catalonia (Spain) in 1860–1870: Flows, energy balance and land use. Ecol. Econ. 58, 4965 (2006). doi: 10.1016/j.ecolecon.2005.05.026.Google Scholar
Krausmann, F.: Milk, manure, and muscle power. Livestock and the transformation of preindustrial agriculture in Central Europe. Hum. Ecol. 32, 735772 (2004). doi: 10.1007/s10745-004-6834-y.Google Scholar
Coughenour, M.B., Ellis, J.E., Swift, D.M., Coppock, D.L., Galvin, K., McCabe, J.T., and Hart, T.C.: Energy extraction and use in a nomadic pastoral ecosystem. Science 230, 619625 (1985). doi: 10.1126/science.230.4726.619.Google Scholar
Krausmann, F., Schandl, H., and Sieferle, R.P.: Socio-ecological regime transitions in Austria and the United Kingdom. Ecol. Econ. 65, 187201 (2008). doi: 10.1016/j.ecolecon.2007.06.009.Google Scholar
Fischer-Kowalski, M., Krausmann, F., and Smetschka, B.: Modelling transport as a key constraint to urbanisation in pre-industrial societies. In Long Term Socio-ecological Research, Singh, S.J., Haberl, H., Chertow, M., Mirtl, M., and Schmid, M. eds.; Springer: Dordrecht, Netherlands, 2013; pp. 77102.Google Scholar
Boserup, E.: The Conditions of Agricultural Growth: The Economics of Agrarian Change under Population Pressure (Transaction Publishers, New Brunswick, 1965).Google Scholar
Clark, C. and Haswell, M.: The Economics of Subsistence Agriculture, 3rd ed. (McMillan, London, 1967).Google Scholar
Fischer-Kowalski, M., Reenberg, A., Schaffartzik, A., and Mayer, A.: Ester Boserup’s Legacy on Sustainability: Orientations for Contemporary Research (Springer, Dordrecht, Netherlands, 2014).Google Scholar
Oesterdiekhoff, G.W., Sieferle, R.P., and Breuninger, H.: Familie, Wirtschaft und Gesellschaft in Europa: die historische Entwicklung von Familie und Ehe im Kulturvergleich (Breuninger Stiftung, Stuttgart, 2002).Google Scholar
Grigg, D.: The Transformation of Agriculture in the West (Blackwell, Oxford, 1992).Google Scholar
Gerhold, D.: Packhorses and wheeled vehicles in England, 1550-1800. J. Transport Hist. 14, 126 (1993).Google Scholar
Grübler, A.: The Rise and Fall of Infrastructures: Dynamics of Evolution and Technological Change in Transport (Physica Verlag, Heidelberg, 1990).Google Scholar
Goldewijk, K.K., Beusen, A., and Janssen, P.: Long-term dynamic modeling of global population and built-up area in a spatially explicit way: HYDE 3.1. Holocene 20, 565573 (2010). doi: 10.1177/0959683609356587.Google Scholar
Livi-Bacci, M.: A Concise History of World Population (John Wiley & Sons, Hoboken, 2012).Google Scholar
Centre for Global Economic History: The Clio-Infra Database on Urban Settlement Sizes: 1500–2000 (Utrecht University, Utrecht, 2014).Google Scholar
Allen, R.C.: Backward into the future: The shift to coal and implications for the next energy transition. Energy Policy 50, 1723 (2012). doi: 10.1016/j.enpol.2012.03.020.Google Scholar
Mumford, L.: Technics and Civilization (Harcourt, Brace and Company, New York, 1934).Google Scholar
Kander, A.: The second and third industrial revolutions. In Power to the People: Energy in Europe over the Last Five Centuries, Kander, A., Malanima, P., and Warde, P. eds.; Princeton University Press: Princeton, 2014; pp. 249386.Google Scholar
Grübler, A.: Technology and Global Change (Cambridge University Press, Cambridge, 2003).Google Scholar
Cunfer, G.: On the Great Plains: Agriculture and Environment (Texas A&M University Press, College Station, 2005).Google Scholar
McNeill, J.R.: Something New under the Sun: An Environmental History of the Twentieth-Century World (The Global Century Series) (W.W. Norton & Company, New York, 2001).Google Scholar
von Gottl-Ottlilienfeld, F. (1924): Fordismus – Über Industrie und technische Vernunft (Fischer, Jena, 1924).Google Scholar
Leaf, M.J.: Green revolution. In Encyclopedia of World Environmental History, Krech, S. III, McNeill, J.R., and Merchant, C. eds.; Routledge: New York, 2004; pp. 615619.Google Scholar
Pfister, C.: The “1950s syndrome” and the transition from a slow-going to a rapid loss of global sustainability. In The Turning Points of Environmental History, Uekoetter, F. eds ; University of Pittsburgh Press: Pittsburgh, 2010; pp. 90118.Google Scholar
UNEP: Decoupling Resource Use and Environmental Impacts from Economic Growth. International Resource Panel (United Nations Environment Programme, Nairobi, 2011).Google Scholar
Lange, H. and Meier, L.: The New Middle Classes: Globalizing Lifestyles, Consumerism and Environmental Concern (Springer Science & Business Media, Dordrecht, Netherlands, 2009).Google Scholar
Lutz, W., Sanderson, W.C., and Scherbov, S.: The End of World Population Growth in the 21st Century: New Challenges for Human Capital Formation and Sustainable Development (Earthscan, Sterling, 2004).Google Scholar
FAO: FAOSTAT Database (Food and Agriculture Organization of the United Nations (FAO), Rome, 2014).Google Scholar
Parikh, J. and Shukla, V.: Urbanization, energy use and greenhouse effects in economic development: Results from a cross-national study of developing countries. Global Environ. Change 5, 87103 (1995). doi: 10.1016/0959-3780(95)00015-G.CrossRefGoogle Scholar
Pachauri, S. and Spreng, D.: Direct and indirect energy requirements of households in India. Energy Policy 30, 511523 (2002). doi: 10.1016/S0301-4215(01)00119-7.Google Scholar
York, R.: Demographic trends and energy consumption in European Union Nations, 1960–2025. Soc. Sci. Res. 36, 855872 (2007). doi: 10.1016/j.ssresearch.2006.06.007.Google Scholar
Meadows, D.H., Meadows, D.H., Randers, J., and Behrens, W.W. III: The Limits to Growth: A Report to the Club of Rome (1972). Universe Books, New York, 1972).Google Scholar
Wiedenhofer, D., Rovenskaya, E., Haas, W., Krausmann, F., and Fischer-Kowalski, M.: Is there a 1970s syndrome? Analyzing structural breaks in the metabolism of industrial economies. Energy Procedia 40, 182191 (2013). doi: 10.1016/j.egypro.2013.08.022.Google Scholar
Peters, G.P., Minx, J.C., Weber, C.L., and Edenhofer, O.: Growth in emission transfers via international trade from 1990 to 2008. Proc. Natl. Acad. Sci. U. S. A. 108, 89038908 (2011). doi: 10.1073/pnas.1006388108.Google Scholar
Wiedmann, T.O., Schandl, H., Lenzen, M., Moran, D., Suh, S., West, J., and Kanemoto, K. The material footprint of nations. Proc. Natl. Acad. Sci. U. S. A. 201220362 (2013). doi: 10.1073/pnas.1220362110.Google Scholar
FAO: Livestock’s long shadow: Environmental issues and options (Food and Agriculture Organization of the United Nations (FAO), Rome, 2006).Google Scholar
Vörösmarty, C.J., Green, P., Salisbury, J., and Lammers, R.B.: Global water resources: Vulnerability from climate change and population growth. Science 289, 284288 (2000). doi: 10.1126/science.289.5477.284.Google Scholar
Alcamo, J., Flörke, M., and Märker, M.: Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrol. Sci. J. 52, 247275 (2007). doi: 10.1623/hysj.52.2.247.Google Scholar
Milly, P.C.D., Dunne, K.A., and Vecchia, A.V.: Global pattern of trends in streamflow and water availability in a changing climate. Nature 438, 347350 (2005). doi: 10.1038/nature04312.Google Scholar
Mudd, G.M.: The environmental sustainability of mining in Australia: Key mega-trends and looming constraints. Resour. Policy 35, 98115 (2010). doi: 10.1016/j.resourpol.2009.12.001.Google Scholar
McKinsey Global Institute: Resource Revolution: Tracking Global Commodity Markets. Trends Survey 2013 (McKinsey Global Institute, New York, 2013).Google Scholar
Lauber, V.: Political economy of renewable energy. In International Encyclopedia of the Social and Behavioral Sciences, 2nd edition; Elsevier: Amsterdam, 2015; pp. 367373.Google Scholar
Berndes, G., Hoogwijk, M., and van den Broek, R.: The contribution of biomass in the future global energy supply: A review of 17 studies. Biomass Bioenergy 25, 128 (2003). doi: 10.1016/S0961-9534(02)00185-X.Google Scholar
Battjes, J.J.: Global Options for Biofuels from Plantations according to IMAGE Simulations (Rijksuniversiteit Groningen; Interfacultaire Vakgroep Energie en Milieukunde, Netherlands; Groningen, 1994).Google Scholar
Fischer, G. and Schrattenholzer, L.: Global bioenergy potentials through 2050. Biomass Bioenergy 20, 151159 (2001). doi: 10.1016/S0961-9534(00)00074-X.Google Scholar
Smeets, E.M.W., Faaij, A.P.C., Lewandowski, I.M., and Turkenburg, W.C.: A bottom-up assessment and review of global bio-energy potentials to 2050. Prog. Energy Combust. Sci. 33, 56106 (2007). doi: 10.1016/j.pecs.2006.08.001.Google Scholar
Lambin, E.F. and Meyfroidt, P.: Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. U. S. A. 108, 34653472 (2011). doi: 10.1073/pnas.1100480108.Google Scholar
Haberl, H., Beringer, T., Bhattacharya, S.C., Erb, K-H., and Hoogwijk, M.: The global technical potential of bio-energy in 2050 considering sustainability constraints. Curr. Opin. Environ. Sustain. 2, 394403 (2010).Google Scholar
Haberl, H., Erb, K-H., Krausmann, F., Running, S., Searchinger, T.D., and Smith, W.K.: Bioenergy: How much can we expect for 2050?. Environ. Res. Lett. 8, 031004 (2013). doi: 10.1088/1748-9326/8/3/031004.Google Scholar
Haberl, H., Erb, K-H., Krausmann, F., Bondeau, A., Lauk, C., Müller, C., Plutzar, C., and Steinberger, J.K.: Global bioenergy potentials from agricultural land in 2050: Sensitivity to climate change, diets and yields. Biomass Bioenergy 35, 47534769 (2011). doi: 10.1016/j.biombioe.2011.04.035.Google Scholar
Haberl, H. and Geissler, S.: Cascade utilization of biomass: Strategies for a more efficient use of a scarce resource. Ecol. Eng. 16(Suppl 1), 111121 (2000). doi: 10.1016/S0925-8574(00)00059-8.Google Scholar
Amon, T., Amon, B., Kryvoruchko, V., Machmüller, A., Hopfner-Sixt, K., Bodiroza, V., Hrbek, R., Friedel, J., Pötsch, E., Wagentristl, H., Schreiner, M., and Zollitsch, W.: Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresour. Technol. 98, 32043212 (2007). doi: 10.1016/j.biortech.2006.07.007.Google Scholar
Fischer-Kowalski, M. and Hausknost, D.: Large scale societal transitions in the past. SEC Working paper 152 (2014), Vienna.Google Scholar
Schellnhuber, H.J., Messner, D., Leggewie, C., Leinfelder, R., Nakicenovic, N., Rahmstorf, S., Schlacke, S., Schmid, J., and Schubert, R.: World in Transition: A Social Contract for Sustainability (German Advisory Council on Global Change (WBGU), Berlin, 2011).Google Scholar
Butzer, K.W. and Endfield, G.H.: Critical perspectives on historical collapse. Proc. Natl. Acad. Sci. U. S. A. 109, 36283631 (2012). doi: 10.1073/pnas.1114772109.Google Scholar
Riddihough, G., Chin, G., Culotta, E., Jasny, B., Roberts, L., and Vignieri, S.: Human conflict: Winning the peace. Science 336, 818819 (2012). doi: 10.1126/science.336.6083.818.Google Scholar
Spinney, L.: Human cycles: History as science. Nature 488, 2426 (2012). doi: 10.1038/488024a.Google Scholar
Steinberger, J.K. and Roberts, J.T.: From constraint to sufficiency: The decoupling of energy and carbon from human needs, 1975–2005. Ecol. Econ. 70, 425433 (2010). doi: 10.1016/j.ecolecon.2010.09.014.Google Scholar
Steinberger, J.K., Roberts, J.T., Peters, G.P., and Baiocchi, G.: Pathways of human development and carbon emissions embodied in trade. Nat. Clim. Change 2, 8185 (2012).Google Scholar