Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-27T23:15:54.814Z Has data issue: false hasContentIssue false

Does electrifying organic synthesis pay off? The energy efficiency of electro-organic conversions

Published online by Cambridge University Press:  10 December 2020

Johannes Seidler
Affiliation:
ESy-Labs GmbH, An der Irler Höhe 3a, 93055Regensburg, Germany Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10–14, 55128Mainz, Germany
Jana Strugatchi
Affiliation:
Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10–14, 55128Mainz, Germany
Tobias Gärtner*
Affiliation:
ESy-Labs GmbH, An der Irler Höhe 3a, 93055Regensburg, Germany
Siegfried R. Waldvogel*
Affiliation:
ESy-Labs GmbH, An der Irler Höhe 3a, 93055Regensburg, Germany Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10–14, 55128Mainz, Germany
*
Address all correspondence to Siegfried R. Waldvogel at [email protected] and Tobias Gärtner at [email protected]
Address all correspondence to Siegfried R. Waldvogel at [email protected] and Tobias Gärtner at [email protected]
Get access

Abstract

The electrification of organic syntheses is a vividly growing research field and has attracted tremendous attention by the chemical industry. This review highlights aspects of electrosynthesis that are rarely addressed in other articles on the topic: the energy consumption and energy efficiency of technically relevant electro-organic syntheses.

Four examples on different scales are outlined.

Electro-organic synthesis has experienced a renaissance within the past years. This review addresses the energy efficiency or energy demand of electrochemically driven transformations as it is a key parameter taken into account by, for example, decision makers in industry. The influential factors are illustrated that determine the energy efficiency and discussed what it takes for an electrochemical process to be classified as “energy efficient.” Typical advantages of electrosynthetic approaches are summarized and characteristic aspects regarding the efficiency of electro-organic processes, such as electric energy consumption, are defined. Technically well-implemented examples are described to illustrate the possible benefits of electrochemical approaches. Further, promising research examples are highlighted and show that the conversion of fine chemicals is rather attractive than the electrochemical generation of synthetic fuels.

Type
Review Article
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

These authors contributed equally to this work.

References

Waldvogel, S.R. and Janza, B.: Renaissance of electrosynthetic methods for the construction of complex molecules. Angew. Chem. Int. Ed. 53, 71227123 (2014).CrossRefGoogle ScholarPubMed
Wiebe, A., Gieshoff, T., Möhle, S., Rodrigo, E., Zirbes, M., and Waldvogel, S.R.: Electrifying organic synthesis. Angew. Chem. Int. Ed. 57, 55945619 (2018).CrossRefGoogle ScholarPubMed
Anastas, P.T. and Kirchhoff, M.M.: Origins, current status, and future challenges of green chemistry. Acc. Chem. Res. 35, 686694 (2002).CrossRefGoogle ScholarPubMed
Frontana-Uribe, B.A., Little, R.D., Ibanez, J.G., Palma, A., and Vasquez-Medrano, R.: Organic electrosynthesis: A promising green methodology in organic chemistry. Green Chem. 12, 20992119 (2010).CrossRefGoogle Scholar
Pollok, D. and Waldvogel, S.R.: Electro-organic synthesis: A 21st Century Technique. Chem. Sci. (2020). In progress. doi:10.1039/D0SC01848A.Google Scholar
Moeller, K.D.: Using physical organic chemistry to shape the course of electrochemical reactions. Chem. Rev. 118, 48174833 (2018).Google ScholarPubMed
Waldvogel, S.R., Lips, S., Selt, M., Riehl, B., and Kampf, C.J.: Electrochemical arylation reaction. Chem. Rev. 118, 67066765 (2018).CrossRefGoogle ScholarPubMed
Yan, M., Kawamata, Y., and Baran, P.S.: Synthetic organic electrochemical methods since 2000: On the verge of a renaissance. Chem. Rev. 117, 1323013319 (2017).CrossRefGoogle ScholarPubMed
Puettner, H.: Organic Electrochemistry, 4th ed., Chapter 31, Lund, H. and Hammerich, O.: (Crc Press Inc, Boca Raton, 2000), pp. 12591307.Google Scholar
Hamann, C.H., Hamnett, A., and Vielstich, W.: Electrochemistry (Wiley-VCH, Weinheim, 2007), pp. 159164.Google Scholar
Bard, A.J., Stratmann, M., Schaefer, H.J., and J., Jörissen: Practical aspects of preparative scale electrolysis. Encyclopedia of Electrochemistry 8, 35 (2004).Google Scholar
Chen, C., Khosrowabadi Kotyk, J.F., and Sheehan, S.W.: Progress toward commercial application of electrochemical carbon dioxide reduction. Chem 4, 25712586 (2018).CrossRefGoogle Scholar
De Luna, P., Hahn, C., Higgins, D., Jaffer, S.A., Jaramillo, T.F., and Sargent, E.H.: What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, 19 (2019).CrossRefGoogle ScholarPubMed
Nitopi, S.A., Bertheussen, E., Scott, S.B., Liu, X., Engstfeld, A.K., Horch, S., Seger, B., Stephens, I.E.L., Chan, K., Hahn, C., Nørskov, J.K., Jaramilo, T.F., and Chorkendorff, I.: Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 76107672 (2019).CrossRefGoogle ScholarPubMed
Yang, N., Waldvogel, S.R., and Jiang, X.: Electrochemistry of carbon dioxide on carbon electrodes. ACS Appl. Mater. Interfaces 8, 2835728371 (2016).CrossRefGoogle ScholarPubMed
Higgins, D., Hahn, C., Xiang, C., Jaramillo, T.F., and Weber, A.Z.: Gas-diffusion electrodes for carbon dioxide reduction: A new paradigm. ACS Energy Lett. 4, 317324 (2019).CrossRefGoogle Scholar
Rademaekers, K., Smith, M., Yearwood, J., Saheb, Y., Moerenhout, J., Pollier, K., Debrosses, N., Badouard, T., Peffen, A., Pollitt, H., Heald, S., and Altman, M.: Study on energy prices, costs and subsidies and their impact on industry and households. Trinomics 74 (2018).Google Scholar
Li, X., Anderson, P., Jhong, H.M., Paster, M., Stubbins, J.F., and Kenis, P.J.A.: Greenhouse gas emissions, energy efficiency, and cost of synthetic fuel production using electrochemical CO2 conversion and the Fischer-Tropsch process. Energy Fuels 30, 59805989 (2016).CrossRefGoogle Scholar
Pletcher, D.: The cathodic reduction of carbon dioxide – What can it realistically achieve? A mini review. Electrochem. Commun. 61, 97101 (2015).Google Scholar
Küngas, R.: Review – Electrochemical CO2 reduction for CO production: Comparison of low- and high-temperature electrolysis technologies. J. Electrochem. Soc. 167, 044508 (2020).CrossRefGoogle Scholar
Al-Rowaili, F.N., Jamal, A., Ba Shammakh, M.S., and Rana, A.A.: Review on recent advances for electrochemical reduction of carbon dioxide to methanol using metal-organic framework (MOF) and non-MOF catalysts: Challenges and future prospects. ACS Sustain. Chem. Eng. 6, 1589515914 (2018).CrossRefGoogle Scholar
Dexin Yang, Y., Qinggong, Z., Chunjun, C., Huizhen, L., Zhimin, L., Zhijuan, Z., Xiaoyu, Z., Shoujie, L., and Buxing, H.: Selective electroreduction of carbon dioxide to methanol on copper selenide nanocatalysts. Nat. Commun. 10, 19 (2019).Google Scholar
Tackett, B.M., Gomez, E., and Chen, J.G.: Net reduction of CO2 via its thermocatalytic and electrocatalytic transformation reactions in standard and hybrid processes. Nat. Catal. 2, 381386 (2019).CrossRefGoogle Scholar
Möhle, S., Zirbes, M., Rodrigo, E., Gieshoff, T., Wiebe, A., and Waldvogel, S.R.: Modern electrochemical aspects for the synthesis of value-added organic products. Angew. Chem. Int. Ed. 57, 60186041 (2018).CrossRefGoogle ScholarPubMed
Wendt, H., Vogt, H., Kreysa, G., Kolb, D.M., Engelmann, G.E., Ziegler, J.C., Goldacker, H., Jüttner, K., Gallla, U., Schmieder, H., and Steckhan, E.: Ullmann's Encyclopedia of Industrial Chemistry (Wiley, Weinheim, 2000); p. 7385.Google Scholar
Vernon, D.: Mechanisms of the electrohydrodimerization of activated olefins. The mechanism in proton donor poor solvents, a revelation. Acta Chem. Scand. 35, 5152 (1981).Google Scholar
Vyazankin, I.L. and Knunyants, N.S.: Hydrodimerization of acrylonitrile. Proc. Natl. Acad. Sci. USA 6, 253256 (1958).Google Scholar
Vaze, A.S., Sawant, S.B., and Pangarkar, V.G.: Electrochemical oxidation of p-t-butyltoluene to p-t-butylbenzaldehyde. J. Appl. Chem. 28, 623626 (1998).Google Scholar
Hannebaum, H., Voss, H., and Weiper-Idelmann, A.: patent EP 0638665 B1, 1996.Google Scholar
Wang, L., Kong, Y., Jiang, J., Wei, D., Li, P., Yang, S., and Ting, Y.: Optimal wastewater treatment using a packed-bed electrode reactor (PBER): From laboratory experiments to industrial-scale approaches. Chem. Eng. J. 334, 707713 (2018).CrossRefGoogle Scholar
Wiebe, A., Schollmeyer, D., Dyballa, K.M., Franke, R., and Waldvogel, S.R.: Selective synthesis of partially protected nonsymmetric biphenols by reagent- and metal-free anodic cross-coupling reaction. Angew. Chem. Int. Ed. 55, 1180111805 (2016).Google ScholarPubMed
Schäfer, H.J.: Recent Contributions of Kolbe Electrolysis to Organic Synthesis (Springer, 2005), Berlin, Heidelberg; pp. 91151. ISBN 978-3-540-48139-3.Google Scholar
Kirste, A., Schnakenburg, G., Stecker, F., Fischer, A., and Waldvogel, S.R.: Anodic phenol: Arene cross-coupling reaction on boron-doped. Angew. Chem. Int. Ed. 49, 971975 (2010).CrossRefGoogle ScholarPubMed
Alexakis, A. and Polet, D.: Biphenol-based phosphoramidite ligands for the enantioselective copper-catalyzed conjugate addition of diethylzinc. J. Org. Chem. 69, 56605667 (2004).CrossRefGoogle ScholarPubMed
Brunel, J.M. and Ce, P.: BINOL: A versatile chiral reagent. Chem. Rev. 105, 857898 (2005).CrossRefGoogle ScholarPubMed
Monti, C., Gennari, C., and Piarulli, U.: Enantioselective conjugate addition of phenylboronic acid to enones catalysed by a chiral tropos/atropos rhodium complex at the coalescence temperature. Chem. Commun. 42, 52815283 (2005).CrossRefGoogle Scholar
Franke, R., Selent, D., and Bo, A.: Applied hydroformylation. Chem. Rev. 112, 56755732 (2012).Google ScholarPubMed
Mormul, J., Mulzer, M., Rosendahl, T., Rominger, F., Limbach, M., and Hofmann, P.: Synthesis of adipic aldehyde by n-selective hydroformylation of 4-pentenal. Organometallics 34, 41024108 (2015).CrossRefGoogle Scholar
Yadav, J.S., Reddy, B.V.S., Uma Gayathri, K., and Prasad, A.R.: [Bmim]PF6/RuCl3xH2O: A novel and recyclable catalytic system for the oxidative coupling of β-naphthols. New J. Chem. 27, 16841686 (2003).CrossRefGoogle Scholar
Hwang, D., Chen, C., and Uang, B.: Aerobic catalytic oxidative coupling of 2-naphthols and phenols by VO (acac)2. Chem. Commun. 13, 12071208 (1999).CrossRefGoogle Scholar
Sharma, V.B., Jain, S.L., and Sain, B.: Methyltrioxorhenium-catalyzed aerobic oxidative coupling of 2-naphthols to binaphthols. Tetrahedron Lett. 44, 26552656 (2003).CrossRefGoogle Scholar
Malkowsky, I.M., Fröhlich, R., Griesbach, U., Pütter, H., and Waldvogel, S.R.: Facile and reliable synthesis of tetraphenoxyborates and their properties. Eur. J. Inorg. Chem. 8, 16901697 (2006).CrossRefGoogle Scholar
Malkowsky, I.M., Rommel, C.E., Wedeking, K., Fröhlich, R., Bergander, K., Nieger, M., Quaiser, C., Griesbach, U., Pütter, H., and Waldvogel, S.R.: Facile and highly diastereoselective formation of a novel pentacyclic scaffold by direct anodic oxidation of 2,4-dimethylphenol. Eur. J. Org. Chem. 2006, 241245 (2006).CrossRefGoogle Scholar
Barjau, J., Königs, P., Kataeva, O., and Waldvogel, S.R.: Reinvestigation of highly diastereoselective pentacyclic spirolactone formation by direct anodic oxidation of 2,4-dimethylphenol. Synlett 15, 23092312 (2008).Google Scholar
Barjau, J., Schnakenburg, G., and Waldvogel, S.R.: Diversity-oriented synthesis of polycyclic scaffolds by modification of an anodic product derived from 2,4-dimethylphenol. Angew. Chem. Int. Ed. 50, 14151419 (2011).CrossRefGoogle ScholarPubMed
Rommel, C., Malkowsky, I., Waldvogel, S. R., Pütter, H., and Griesbach, U.: patent WO 2005/075709 A2, 2005.Google Scholar
Malkowsky, I.M., Rommel, C.E., Fröhlich, R., Griesbach, U., Püttner, H., and Waldvogel, S.R.: Novel template-directed anodic phenol-coupling reaction. Chemistry 12, 74827488 (2006).CrossRefGoogle ScholarPubMed
Rommel, C. E., Malkowsky, I., Waldvogel, S., Puetter, H., and Griesbach, U.: Anodic dimerization of substituted benzenes for the production of biarylalcohols, PCT Int. Appl. WO 2005075709 A2 20050818, 2005.Google Scholar
Malkowsky, I.M., Griesbach, U., Pütter, H., and Waldvogel, S.R.: Unexpected highly chemoselective anodic ortho-coupling reaction of 2,4-dimethylphenol on boron-doped diamond electrodes. Eur. J. Org. Chem. 20, 45694572 (2006).CrossRefGoogle Scholar
Kirste, A., Nieger, M., Malkowsky, I.M., Stecker, F., Fischer, A., and Waldvogel, S.R.: Ortho-selective phenol-coupling reaction by anodic treatment on boron-doped diamond electrode using fluorinated alcohols. Chem. Eur. J. 15, 22732277 (2009).CrossRefGoogle ScholarPubMed
Ayata, S., Stefanova, A., Ernst, S., and Baltruschat, H.: The electro-oxidation of water and alcohols at BDD in hexafluoroisopropanol. J. Electroanal. Chem. 701, 16 (2013).CrossRefGoogle Scholar
Lips, S., Wiebe, A., Elsler, B., Schollmeyer, D., Dyballa, K.M., Franke, R., and Waldvogel, S.R.: Synthesis of meta-terphenyl-2,2′′-diols by anodic C−C cross-coupling reactions. Angew. Chem. Int. Ed. 55, 1087210876 (2016).CrossRefGoogle ScholarPubMed
Cheng, J. and Deming, T.J.: Synthesis of polypeptides by ring-opening polymerization of α-amino acid N-carboxyanhydrides. Pept. Mater. 310, 126 (2011).Google Scholar
Lips, S. and Waldvogel, S.R.: Use of boron-doped diamond electrodes in electro-organic synthesis. ChemElectroChem 6, 16491660 (2019).Google Scholar
Selt, M., Mentizi, S., Schollmeyer, D., Franke, R., and Waldvogel, S.R.: Selective and scalable dehydrogenative electrochemical synthesis of 3,3’,5,5’-tetramethyl-2,2’-biphenol. Synlett 30, 20622067 (2019).Google Scholar
Selt, M., Franke, R., and Waldvogel, S.R.: Supporting-electrolyte-free and scalable flow process for the electrochemical synthesis of 3,3′,5,5′-tetramethyl-2,2′-biphenol. Org. Process Res. Dev. (2020). In progress. doi:10.1021/acs.oprd.0c00170.Google Scholar
Kirste, A., Elsler, B., Schnakenburg, G., and Waldvogel, S.R.: Efficient anodic and direct phenol-arene C,C cross-coupling: The benign role of water or methanol. J. Am. Chem. Soc. 134, 35713576 (2012).CrossRefGoogle ScholarPubMed
Röckl, J.L., Schollmeyer, D., Franke, R., and Waldvogel, S.R.: Dehydrogenative anodic C−C coupling of phenols bearing electron-withdrawing groups. Angew. Chem. Int. Ed. 59, 315319 (2020).CrossRefGoogle Scholar
Kuilin, L., Yanchen, F., Ying, Z., Yi, Y., Jinrong, W., Ying, Z., and Qianfan, Z.: Elastic Ag-anchored N-doped graphene/carbon foam for the selective electrochemical reduction of carbon dioxide to ethanol. J. Mater. Chem. A 6, 50255031 (2018).Google Scholar
Hoang, T.T.H., Verma, S., Ma, S., Fister, T.T., Timoshenko, J., Frenkel, A.I., Kenis, P.J., and Gewirth, A.A.: Nanoporous copper-silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc. 140, 57915797 (2018).CrossRefGoogle ScholarPubMed
Li, F., Thevenon, A., Rosas-Hernández, A., Wang, Z., Li, Y., Gabardo, C.M., Ozden, A., Dinh, C.T., Li, J., Wang, Y., Edwards, J.P., Xu, Y., McCallum, C., Tao, L., Liang, Z.-Q., Luo, M., Wang, X., Li, H., O'Brien, C.P., Tan, C.-S., Nam, D.-H., Quintero-Bermudez, R., Zhuang, T.-T., Li, Y.C., Han, Z., Britt, R.D., Sinton, D., Agapie, T., Peters, J.C., and Sargent, E.H.: Molecular tuning of CO2-to-ethylene conversion. Nature 577, 509513 (2020).CrossRefGoogle ScholarPubMed
García de Arquer, F.P., Dinh, C.-T.-, Ozden, A., Wicks, J., McCallum, C., Kirmani, A.R., Nam, D.-H., Gabardo, C., Seifitokaldani, A., Wang, X., Li, Y.C., Li, F., Edwards, J., Richter, L.J., Thorpe, S.J., Sinton, D., and Sargent, E.H.: CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science 367, 661666 (2020).CrossRefGoogle ScholarPubMed