Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-08T08:33:31.277Z Has data issue: false hasContentIssue false

UV-initiated crosslinking of electrospun chitosan/poly(ethylene oxide) nanofibers doped with ZnO-nanoparticles: development of antibacterial nanofibrous hydrogel

Published online by Cambridge University Press:  30 September 2020

G.M. Estrada-Villegas*
Affiliation:
CONACyT — Centro de Investigación en Química Aplicada, Av. Alianza Sur 204 Parque de Innovación e Investigación Tecnológica, Apodaca, Nuevo León66629, Mexico
J.I. Del Río-De Vicente
Affiliation:
CONACyT — Centro de Investigación en Química Aplicada, Av. Alianza Sur 204 Parque de Innovación e Investigación Tecnológica, Apodaca, Nuevo León66629, Mexico
L. Argueta-Figueroa
Affiliation:
CONACyT — Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca68120, Mexico
G. González-Pérez
Affiliation:
Departamento de Ingeniería, Tecnológico Nacional de México, Instituto Tecnológico de Nuevo León, Av. Eloy Cavazos, # 2001 Colonia Tolteca, Guadalupe, Nuevo León67170, Mexico
*
Address all correspondence to G.M. Estrada-Villegas at [email protected]
Get access

Abstract

UV-initiated crosslinking of electrospun poly(ethylene) oxide (PEO)/chitosan (CS) nanofibers doped with zinc oxide nanoparticles (ZnO-NPs) was performed using pentaerythritol triaclyrate (PETA) as the photoinitiator and crosslinker agent. The influence of the addition of PETA to the PEO/CS diameter and crosslinking of nanofibers was evaluated. The effect of irradiation time on the morphology and swelling properties of the crosslinked nanofibers were investigated. For ZnO-NPs, the minimum inhibitory concentrations were found at 1 mg/mL, and the minimum bactericidal concentrations at 2 mg/mL for all the strains tested. The nanofibrous hydrogel antibacterial effect was tested. This material enters the realm of fibrous hydrogels which have potential use in several applications as in the biomedical area.

Type
Research Letters
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afshari, M.: Electrospun Nanofibers, 1st ed. (Woodhead Publishing, North Carolina. USA, 2016) p 648.Google Scholar
Zhang, J.H. and Yu, S.H.: Nanoparticles meet electrospinning: recent advances and future prospects. Chem. Soc. Rev. 43, 4423 (2014).CrossRefGoogle ScholarPubMed
Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N.H.M., Ann, L.C., and Bakhori, S.K.: Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nanomicro. Lett. 7, 219 (2015).Google ScholarPubMed
Charoenlarp, P., Rajendran, A.K., Fujihara, R., Kojima, T., Nakahama, K., and Sasaki, Y.: The improvement of calvarial bone healing by durable nanogel-crosslinked materials. J. Biomater. Sci. 29, 1876 (2018).CrossRefGoogle ScholarPubMed
Ferreira, P., Santos, P., Alves, P., Carvalho, M.P., and , K.D.: Photocrosslinkable electrospun fiber meshes for tissue engineering applications. Eur. Polym. J. 97, 210 (2017).CrossRefGoogle Scholar
Vashisth, P. and Pruthi, V.: Synthesis and characterization of crosslinked gellan/PVA nanofibers for tissue engineering application. Mater. Sci. Eng. C 67, 304 (2016).CrossRefGoogle ScholarPubMed
Jayakumar, R., Menon, D., Manzoor, K., Nair, S.V., and Tamura, H.: Biomedical applications of chitin and chitosan based nanomaterials — a short review. Carbohyd. Polym. 82, 227 (2010).CrossRefGoogle Scholar
Datta, P., Ghosh, P., Ghosh, K., Maity, P., Samanta, S.K., and Ghosh, S.K.: In vitro ALP and osteocalcin gene expression analysis and in vivo biocompatibility of N-methylene phosphonic chitosan nanofibers for bone regeneration. J. Biomed. Nanotech. 9, 870 (2013).CrossRefGoogle ScholarPubMed
Koosha, M. and Mirzadeh, H.: Electrospinning, mechanical properties, and cell behavior study of chitosan/PVA nanofibers. J. Biomed. Mat. Res. A 103, 3081 (2015).CrossRefGoogle ScholarPubMed
Dhawan, S., Dhawan, K., Varma, M., and Sinha, R.V.: High molecular weight poly(ethylene oxide)-based drug delivery systems — part I: hydrogels and hydrophilic matrix systems. Pharm. Tech. 29, 72 (2005).Google Scholar
Erizal, E. and Wikanta, T.: Synthesis of polyethylene oxide (PEO)-chitosan hydrogel prepared by gamma radiation technique. Indones. J. Chem. 11, 16 (2011).CrossRefGoogle Scholar
Şimşek, M., Çakmak, S., and Gümüşderelioğlu, M.: Insoluble poly(ethylene oxide) nanofibrous coating materials: effects of crosslinking conditions on the matrix stability. J. Polym. Res. 23, 236 (2016).CrossRefGoogle Scholar
Doytcheva, M., Dotcheva, D., Stamenova, R., and Tsvetanov, C.: UV-initiated crosslinking of poly(ethylene oxide) with pentaerythritol triacrylate in solid state. Macromol. Mat. Eng. 286, 30 (2001).3.0.CO;2-6>CrossRefGoogle Scholar
Kianfar, P., Vitale, A., Vacche, S.D., and Bongiovanni, R.: Photo-crosslinking of chitosan/poly(ethylene oxide) electrospun nanofibers. Carbohyd. Polym. 217, 144 (2019).CrossRefGoogle ScholarPubMed
Forbey, S.J., Divoux, G.M., Moore, K.E., and Moore, R.B.: Cross-linked electrospun poly(ethylene oxide) fiber mats as structured polymer gel electrolytes. ECS Trans. 66, 1 (2015).CrossRefGoogle Scholar
Lee, S.B., Kim, Y.H., Chong, M.S., and Lee, Y.M.: Preparation and characteristics of hybrid scaffolds composed of β-chitin and collagen. Biomaterials 25, 2309 (2004).CrossRefGoogle ScholarPubMed
Ziebuhr, W., Hennig, S., Eckart, M., Kranzler, H., Batzilla, C., and Kozitskaya, S.: Nosocomial infections by Staphylococcus epidermidis: how a commensal bacterium turns into a pathogen. Int. J. Antimicrob. Agents 28, 14 (2006).CrossRefGoogle ScholarPubMed
Foster, T.J.: Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol. Rev. 41, 430 (2017).CrossRefGoogle ScholarPubMed
Agarwal, S., Wendorff, J.H., and Greiner, A.: Use of electrospinning technique for biomedical applications. Polymer 49, 5603 (2008).CrossRefGoogle Scholar
Zahedi, P., Rezaeian, I., Ranaei-Siadat, S.O., Jafari, S.H., and Supaphol, P.: A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym. Adv. Technol. 21, 77 (2010).CrossRefGoogle Scholar
Fereydouni, N., Darroudi, M., Movaffagh, J., Shahroodi, A., Butler, A.E., Ganjali, S., and Sahebkar, A.: Curcumin nanofibers for the purpose of wound healing. J. Cell. Physiol. 234, 1 (2018).Google ScholarPubMed
Estrada-Villegas, G.M., Martínez- Hernández, R.C., Morales, J., and Olayo, R.: Incorporation of ciprofloxacin/beta cyclodextrin inclusion complex to polylactic acid electrospun fibers and modeling of the release behavior. Rev. Mex. Ing. Quím. 18, 737 (2019).CrossRefGoogle Scholar
Yuvaraja, G., Pathak, J.L., Weijiang, Z., Yaping, Z., and Jiao, X.: Antibacterial and wound healing properties of chitosan/poly(vinyl alcohol)/zinc oxide beads (CS/PVA/ZnO). Int. J. Biol. Macromol. 103, 234 (2017).Google Scholar
Wayne, P.A.: Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—Ninth Edition. CLSI Document M07-A9 (Clinical and Laboratory Standards Institute, Pensilvania, 2012).Google Scholar
Jorgensen, J. and Turnidge, J.: Susceptibility test methods: dilution and disk diffusion methods. In Manual of Clinical Microbiology, 11th ed. Washington, DCA. USA (American Society of Microbiology, 2015) p. 1253.CrossRefGoogle Scholar
Liu, B. and Zeng, H.C.: Direct growth of enclosed ZnO nanotubes. Nano. Res. 2, 201 (2009).CrossRefGoogle Scholar
Kumar, M.N.R.: A review of chitin and chitosan applications. React. Funct. Polym. 46, 1 (2000).CrossRefGoogle Scholar
Kimura, N., Umemura, J., and Hayashi, S.: Polarized FT-IR spectra of water in the middle phase of Triton X100-water system. J. Colloid Interface Sci. 182, 356 (1996).CrossRefGoogle Scholar
Alhosseini, S.N., Moztarzadeh, F., Mozafari, M., Asgari, S., Dodel, M., Samadikuchaksaraei, A., and Jalali, N.: Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering. Int. J. Nanomed. 7, 2534 (2012).Google ScholarPubMed
Zhou, C., Wang, Q., Wu, Q., Doytcheva, M., Dotcheva, D., Stamenova, R., and Tsvetanov, C.: UV-initiated crosslinking of poly(ethylene oxide) with pentaerythritol triacrylate in solid state. Macromol. Mater. Eng. 286, 3033 (2001).Google Scholar
Xiong, G., Pal, U., Serrano, J.G., Ucer, K.B., and Williams, R.T.: Photoluminescence and FTIR study of ZnO nanoparticles: the impurity and defect perspective. Phys. Status Solidi 3, 3577 (2006).Google Scholar
Zhou, C., Wang, Q., and Wu, Q.: UV-initiated crosslinking of electrospun poly(ethylene oxide) nanofibers with pentaerythritol triacrylate: effect of irradiation time and incorporated cellulose nanocrystals. Carbohyd. Polym. 87, 1779 (2012).CrossRefGoogle Scholar
Koosha, M., Raoufi, M., and Moravvej, H.: One-pot reactive electrospinning of chitosan/PVA hydrogel nanofibers reinforced by halloysite nanotubes with enhanced fibroblast cell attachment for skin tissue regeneration. Colloids Surf. B Biointerfaces 179, 270 (2019).CrossRefGoogle ScholarPubMed
Ma, J., Li, J., Bao, Y., Zhu, Z., Wang, X., and Zhang, J.: Synthesis of large-scale uniform mulberry-like ZnO particles with microwave hydrothermal method and its antibacterial property. Ceram. Int. 39, 2803 (2013).CrossRefGoogle Scholar
Stanković, A., Dimitrijević, S., and Uskoković, D.: Influence of size scale and morphology on antibacterial properties of ZnO powders hydrothermally synthesized using different surface stabilizing agents. Colloids Surf. B Biointerfaces 102, 21 (2013).CrossRefGoogle Scholar
Supplementary material: Image

Estrada-Villegas et al. supplementary material

Estrada-Villegas et al. supplementary material

Download Estrada-Villegas et al. supplementary material(Image)
Image 367.1 KB