Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-08T10:31:08.689Z Has data issue: false hasContentIssue false

Size effects of micrometer-scaled metals—the search continues for materials containing real microstructures

Published online by Cambridge University Press:  09 April 2017

A. H. W. Ngan*
Affiliation:
Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
X. X. Chen
Affiliation:
Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China Ove Arup & Partners Hong Kong Ltd, Hong Kong, People's Republic of China
P. S. S. Leung
Affiliation:
Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China Ove Arup & Partners Hong Kong Ltd, Hong Kong, People's Republic of China
R. Gu
Affiliation:
Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China Public Testing & Analysis Center, South University of Science and Technology of China, Shenzhen 518055, People's Republic of China
K. F. Gan
Affiliation:
Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
*
Address all correspondence to A. H. W. Ngan at [email protected]
Get access

Abstract

Recent observations on strength and deformation of small metals containing microstructures, including dislocation patterns, grain boundaries, and second-phase precipitates are reviewed. These microstructures impose an internal length scale that may interplay with the extrinsic length scale due to the specimen size to affect strength and deformation in an intricate manner. For micro-crystals containing pre-existing dislocations, Taylor work-hardening may dictate the dependence of strength on specimen size. The presence of grain boundaries in a small specimen may lead to effects far from the conventional Hall–Petch behavior. Precipitate–dislocation interactions in a small specimen may lead to an interesting weakest-size behavior.

Type
Prospective Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dou, R. and Derby, B.: A universal scaling law for the strength of metal micropillars and nanowires. Scr. Mater. 61, 524 (2009).Google Scholar
2. Greer, J.R. and De Hosson, J.T.M.: Plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56, 654 (2011).Google Scholar
3. Ngan, A.H.W., Zuo, L., and Wo, P.C.: Size dependence and stochastic nature of yield strength of micron-sized crystals: a case study on Ni3Al. Prof. R. Soc. Lond. A462, 1661 (2006).Google Scholar
4. Zuo, L. and Ngan, A.H.W.: Molecular dynamics study on compressive yield strength in Ni3Al micro-pillars. Phil. Mag. Lett. 86, 355 (2006).Google Scholar
5. Greer, J.R., Oliver, W.C., and Nix, W.D.: Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 1821 (2005).Google Scholar
6. Greer, J.R. and Nix, W.D.: Nanoscale gold pillars strengthened through dislocation starvation. Phys. Rev. B 73, 245410 (2006).Google Scholar
7. Shan, Z.W., Mishra, R.K., Asif, S.A.S., Warren, O.L., and Minor, A.M.: Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat. Mater. 7, 115 (2008).Google Scholar
8. Parthasarathy, T.A., Rao, S.I., Dimiduk, D.M., Uchic, M.D., and Trinkle, D.R.: Contribution to size effect of yield strength from the stochastics of dislocation source lengths in finite samples. Scr. Mater. 56, 313 (2007).Google Scholar
9. Norfleet, D.M., Dimiduk, D.M., Polasik, S.J., Uchic, M.D., and Mills, M.J.: Dislocation structures and their relationship to strength in deformed nickel microcrystals. Acta Mater. 56, 2988 (2008).CrossRefGoogle Scholar
10. Ng, K.S. and Ngan, A.H.W.: Stochastic nature of plasticity of aluminum micro-pillars. Acta Mater. 56, 1712 (2008).CrossRefGoogle Scholar
11. Cui, Y., Po, C., and Ghoniem, N.: Controlling strain bursts and avalanches at the nano- to micrometer scale. Phys. Rev. Lett. 117, 155502 (2016).CrossRefGoogle ScholarPubMed
12. Rao, S.I., Dimiduk, D.M., Parthasarathy, T.A., Uchic, M.D., Tang, M., and Woodward, C.: Athermal mechanisms of size-dependent crystal flow gleaned from three-dimensional discrete dislocation simulations. Acta Mater. 56, 3245 (2008).CrossRefGoogle Scholar
13. El-Awady, J.A., Wen, M., and Ghoniem, N.M.: The role of the weakest-link mechanism in controlling the plasticity of micropillars. J. Mech. Phys. Solids 57, 32 (2009).CrossRefGoogle Scholar
14. Motz, C., Weygand, D., Senger, J., and Gumbsch, P.: Initial dislocation structures in 3-D discrete dislocation dynamics and their influence on microscale plasticity. Acta Mater. 57, 1744 (2009).Google Scholar
15. Akarapu, S., Zbib, H.M., and Bahr, D.F.: Analysis of heterogeneous deformation and dislocation dynamics in single crystal micropillars under compression. Int. J. Plast. 26, 239 (2010).CrossRefGoogle Scholar
16. Huang, M., Zhao, L., and Tong, J.: Discrete dislocation dynamics modelling of mechanical deformation of nickel-based single crystal superalloys. Int. J. Plast. 28, 141 (2012).Google Scholar
17. Cui, Y., Lin, P., Liu, Z.L., and Zhuang, Z.: Theoretical and numerical investigations of single arm dislocation source controlled plastic flow in FCC micropillars. Int. J. Plast. 55, 279 (2014).CrossRefGoogle Scholar
18. Yu, Q., Legros, M., and Minor, A.M.: In situ TEM nanomechanics. MRS Bull. 40, 62 (2015).Google Scholar
19. Imrich, P.J., Kirchlechner, C., Kiener, D., and Dehm, G.: In situ TEM microcompression of single and bicrystalline samples: insights and limitations. JOM 67, 1704 (2015).Google Scholar
20. Maaß, R., Meza, L., Gan, B., Tin, S., and Greer, J.R.: Ultrahigh strength of dislocation-free Ni3Al nanocubes. Small 8, 1869 (2012).Google Scholar
21. Chen, L.Y., He, M.-R., Shin, J., Richter, G., and Gianola, D.S.: Measuring surface dislocation nucleation in defect-scarce nanostructures. Nature Mater. 14, 707 (2015).Google Scholar
22. Bei, H., Shim, S., Pharr, G.M., and George, E.P.: Effects of pre-strain on the compressive stress-strain response of Mo-alloy single-crystal micropillars. Acta Mater. 56, 4762 (2008).CrossRefGoogle Scholar
23. Weinberger, C.R. and Cai, W.: Surface-controlled dislocaiton multiplication in metal micropillars. Proc. Nat. Acad. Sci. USA 105, 14304 (2008).Google Scholar
24. Zhu, T.T., Bushby, A.J., and Dunstan, D.J.: Materials mechanical size effects: a review. Mater. Technol. 23, 193 (2008).Google Scholar
25. Ngan, A.H.W.: An explanation for the power-law scaling of size effect on strength in micro-specimens. Scr. Mater. 65, 978 (2011).CrossRefGoogle Scholar
26. Gu, R. and Ngan, A.H.W.: Dislocation arrangement in small crystal volumes determines power-law size dependence of yield strength. J. Mech. Phys. Solids 61, 1531 (2013).Google Scholar
27. Schneider, A.S., Kiener, D., Yakacki, C.M., Maier, H.J., Gruber, P.A., Tamura, N., Kunz, M., Minor, A.M., and Frick, C.P.: Influence of bulk pre-straining on the size effect in nickel compression pillars. Mater. Sci. Eng. A 559, 147 (2013).Google Scholar
28. El-Awady, J.A., Uchic, M.D., Shade, P.A., Kim, S.-L., Rao, S.I., Dimiduk, D.M., and Woodward, C.: Pre-straining effects on the power-law scaling of size-dependent strengthening in Ni single crystals. Scr. Mater. 68, 207 (2013).CrossRefGoogle Scholar
29. Phani, P.S., Johanns, K.E., George, E.P., and Pharr, G.M.: A simple stochastic model for yielding in specimens with limited number of dislocations. Acta Mater. 61, 2489 (2013).Google Scholar
30. El-Awady, J.A.: Unravelling the physics of size-dependent dislocation-mediated plasticity. Nat. Commun. 6, 5926 (2015).CrossRefGoogle ScholarPubMed
31. Gu, R. and Ngan, A.H.W.: Effects of pre-straining and coating on plastic deformation of aluminum micropillars. Acta Mater. 60, 6102 (2012).CrossRefGoogle Scholar
32. Ehrler, B., Hou, X.D., Zhu, T.T., Png, K.M.Y., Walker, C.J., Bushby, A.J., and Dunstan, D.J.: Grain size and sample size interact to determine strength in a soft metal. Phil. Mag. 88, 3043 (2008).Google Scholar
33. Chen, X.X. and Ngan, A.H.W.: Specimen size and grain size effects on tensile strength of Ag microwires. Scr. Mater. 64, 717 (2011).Google Scholar
34. Keller, C., Hug, E., and Feaugas, X.: Microstructural size effects on mechanical properties of high purity nickel. Int. J. Plast. 27, 635 (2011).CrossRefGoogle Scholar
35. Chen, X.X. and Ngan, A.H.W.: Tensile deformation of silver micro-wires of small thickness-to-grain-size ratios. Mater. Sci. Eng. A 539, 74 (2012).Google Scholar
36. Leung, P.S.S. and Ngan, A.H.W.: Size effect on the strength of micron-sized polycrystals—a dislocation dynamics simulation study. Scr. Mater. 69, 235 (2013).Google Scholar
37. Gu, R. and Ngan, A.H.W.: Size effect on the deformation behavior of duralumin micropillars. Scr. Mater. 68, 861 (2013).CrossRefGoogle Scholar
38. Gan, K., Gu, R., and Ngan, A.H.W.: The weakest size of precipitated alloys in the micro regime: the case of duralumin. Submitted to J. Mater. Res.Google Scholar
39. Gu, R., Leung, P.S.S., and Ngan, A.H.W.: Size effect on deformation of duralumin micropillars—a dislocation dynamics study. Scr. Mater. 76, 73 (2014).Google Scholar
40. Zhou, C., Beyerlein, I.J., and LeSar, R.: Plastic deformation mechanisms of fcc single crystals at small scales. Acta Mater. 59, 7673 (2011).Google Scholar