Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-02T22:06:58.606Z Has data issue: false hasContentIssue false

Preparation of Mn-doped ZrO2/TiO2 photocatalysts for efficient degradation of Rhodamine B

Published online by Cambridge University Press:  06 August 2015

Hua Chen
Affiliation:
Department of Materials Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. China
Guohua Jiang*
Affiliation:
Department of Materials Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. China National Engineering Laboratory for Textile Fiber Materials and Processing Technology, Hangzhou 310018, Zhejiang, P.R. China Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Hangzhou 310018, P.R. China
Tengteng Jiang
Affiliation:
Department of Materials Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. China
Lei Li
Affiliation:
Department of Materials Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. China
Yongkun Liu
Affiliation:
Department of Materials Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. China
Qin Huang
Affiliation:
Department of Materials Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. China
Wenxing Chen
Affiliation:
Department of Materials Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. China National Engineering Laboratory for Textile Fiber Materials and Processing Technology, Hangzhou 310018, Zhejiang, P.R. China Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Hangzhou 310018, P.R. China
*
*Address all correspondence to Guohua Jiang at[email protected]
Get access

Abstract

The Mn-doped ZrO2/TiO2 nanostructured photocatalysts had been prepared by the simple hydrothermal method. The morphologies and structures of the as-prepared photo-catalyst were characterized by transmission electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, and electron paramagnetic resonance. The resultant nanostructured photocatalysts exhibited high photocatalytic activity under ultraviolet (UV) light irradiation, attributing to the improvement of the photo-absorption property and the separation efficiency of photo-generated electrons and holes. The hydroxyl radicals (•OH), superoxide radical (•O2), and holes (h+) are the main active species in aqueous solution under UV light irradiation.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Cheng, X., Zhi, S., Zhang, L., Zhou, B., Peng, J., Xie, M., Zhang, M. and Pang, D.: Visible light-induced plasmid DNA damage catalyzed by a CdSe/ZnS-photosensitized nano-TiO2 film. Environ. Sci. Technol. 42, 5049 (2008).Google Scholar
2.Kolpin, D.W., Furlong, E.T. and Meye, M.T.: Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams. Environ. Sci. Technol. 36, 1202 (2002).CrossRefGoogle ScholarPubMed
3.Penuela, G.A. and Barcelo, D.: Photosensitized degradation of organic pollutants in water: processes and analytical applications. Trends Anal. Chem. 17, 605 (1998).Google Scholar
4.He, C., Mudar, A.A., Xiong, Y., Shu, D. and Li, X.: Photoelectrocatalytic degradation of organic pollutants in aqueous solution using a Pt-TiO2 Film. Int. J. Photoenergy 7, 634369 (2009).Google Scholar
5.Galindo, C., Jacques, P. and Kalt, A.: Photochemical and photocatalytic degradation of an indigoid dye: a case study of acid blue 74 (AB74). J. Photochem. Photobio. A-Chem. 141, 47 (2001).CrossRefGoogle Scholar
6.Chatterjee, D., Mahata, A.: Visible light induced photodegradation of organic pollutants on dye adsorbed TiO2 surface. J. Photochem. Photobio. A-Chem. 153, 199 (2002).CrossRefGoogle Scholar
7.Wang, R., Jiang, G., Ding, Y., Wang, Y., Sun, X., Wang, X. and Cheng, W.: Photocatalytic activity of heterostructures based on TiO2 and halloysite nanotubes. ACS Appl. Mater. Interfaces 3, 4154 (2011).Google Scholar
8.Chen, X. and Mao, S.: Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891 (2007).Google Scholar
9.Zhu, K., Neale, N.R. and Miedaner, A.: Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett. 7, 69 (2007).Google Scholar
10.Roy, P., Berger, S. and Schmuki, P.: TiO2 nanotubes: synthesis and applications. Angew. Chem. Int. Ed. 50, 2904 (2011).CrossRefGoogle ScholarPubMed
11.Qu, X., Xie, D., Cao, L. and Du, F.: Synthesis and characterization of TiO2/ZrO2 coaxial core-shell composite nanotubes for photocatalytic applications. Ceram. Int. 40, 12647 (2014).CrossRefGoogle Scholar
12.Liu, G., Zhang, M., Zhang, D., Zhou, J., Meng, F. and Ruan, S.: Ultrahigh responsivity UV detector based on TiO2/Pt-doped TiO2 multilayer nanofilms. J. Acoust. Soc. Am. 616, 155 (2014).Google Scholar
13.Huo, J., Hu, Y., Jiang, H., Hou, X., Li, C.: Continuous flame synthesis of near surface nitrogen doped TiO2 for dye-sensitized solar cells. Biochem. Eng. J. 258, 163 (2014).Google Scholar
14.Li, Z., Renata, W. and Witold, K.: Synthesis and characterization of sulfated TiO2 nanorods and ZrO2/TiO2 nanocomposites for the esterification of biobased organic acid. ACS Appl. Mater. Interfaces 4, 4499 (2012).CrossRefGoogle ScholarPubMed
15.Jiang, G., Li, X., Wei, Z., Jiang, T., Du, X. and Chen, W.: Growth of N-doped BiOBr nanosheets on carbon fibers for photocatalytic degradation of organic pollutants under visible light irradiation. Powder Technol. 260, 84 (2014).Google Scholar
16.Maitani, M., Zhan, C., Mochizuki, D., Suzuki, E. and Wada, Y.: Influence of co-existing alcohol on charge transfer of H2 evolution under visible light with dye-sensitized nanocrystalline TiO2. Appl. Catal. B: Environ. 140, 406 (2013).CrossRefGoogle Scholar
17.Siva, N., Reddy, I., Thirupathi, B., Makram, S. and Panagiotis, G.: Visible-light-induced photodegradation of gas phase acetonitrile using aerosol-made transition metal (V, Cr, Fe, Co, Mn, Mo, Ni, Cu, Y, Ce, and Zr) doped TiO2. Appl. Cat. B: Environ. 144, 333 (2014).Google Scholar
18.Jun, L., Sheng, T., Su, L., Xu, G., Wang, D., Zheng, Z. and Wu, Y.: N, S co-doped-TiO2/fly ash beads composite material and visible light photocatalytic activity. Appl. Surface Sci. 284, 229 (2013).Google Scholar
19.Vishwanathan, V., Roh, H.S. and Kim, J.W.: Surface properties and catalytic activity of TiO2–ZrO2 mixed oxides in dehydration of methanol to dimethyl ether. Catal. Lett. 96, 23 (2004).Google Scholar
20.Navio, J.A., Hidalgo, M.C. and Colon, G.: Preparation and physicochemical properties of ZrO2 and Fe/ZrO2 prepared by a sol-gel technique. Langmuir 17, 202 (2001).CrossRefGoogle Scholar
21.Alvarez, M., López, T. and Odriozola, J.A.: 2,4-Dichlorophenoxyacetic acid (2,4-D) photodegradation using an Mn+, ZrO2 photocatalyst: XPS, UV–vis, XRD characterization. Appl. Cat. B-Environ. 73, 34 (2007).CrossRefGoogle Scholar
22.Karunakaran, C. and Senthilvelan, S.: Photocatalysis with ZrO2: oxidation of aniline. J. Mol. Cat. A-Chem. 233, 1 (2005).Google Scholar
23.Pany, S. and Parida, K.: Sulfate anchored hierarchical meso-macroporous N doped TiO2: A novel photocatalyst for visible light H2 evolution. ACS Sustain. Chem. Eng. 2, 1429 (2014).Google Scholar
24.Neppolian, B., Wang, Q. and Yamashita, H.: Synthesis and characterization of ZrO2–TiO2 binary oxide semiconductor nanoparticles: application and interparticle electron transfer process. Appl. Cat. A. 333, 264 (2007).Google Scholar
25.Tripathi, A., Mathpal, M., Kumar, P., Singh, M., Soler, M. and Agarwal, A.: Structural, optical and photoconductivity of Sn and Mn doped TiO2 nanoparticles. J. Alloy. Compd. 622, 37 (2015).Google Scholar
26.Sofianou, M.-V., Tassi, M., Psycharis, V., Boukos, N., Thanos, S., Vaimakis, T., Yu, J. and Trapalis, C.: Solvothermal synthesis and photocatalytic performance of Mn4+-doped anatase nanoplates with exposed {001} facets. Appl. Catal. B: Environ. 162, 27 (2015).CrossRefGoogle Scholar
27.Kolen'ko, Y., Kovnir, K., Gavrilov, A., Garshev, A., Frantti, J., Lebedev, O., Churagulov, B., Van Tendeloo, G. and Yoshimura, M.: Hydrothermal synthesis and characterization of nanorods of various titanates and titanium dioxide. J. Phys. Chem. B 110, 4030 (2006).Google Scholar
28.Khataee, A., Sheydaei, M. and Hassani, A.: Sonocatalytic removal of an organic dye using TiO2 Montmorillonite nanocomposite. Ultrason. Sonochem. 22, 404 (2015).CrossRefGoogle ScholarPubMed
29.Jiang, G., Tang, B., Li, X., Wei, Z., Wang, X., Chena, W., Wan, J. and Shen, L.: Preparation of Ag-modified Zn2GeO4 nanorods for photo-degradation of organic pollutants. Powder Technol. 251, 37 (2014).Google Scholar
30.Vadivel, S., Keerthi, P., Vanitha, M., Muthukrishnaraj, A. and Balasubramanian, N.: Solvothermal synthesis of Sm-doped BiOBr/RGO composite as an efficient photocatalytic material for methyl orange degradation. Mater. Lett. 128, 287 (2014).CrossRefGoogle Scholar
31.Ksapabutr, B., Gulari, E. and Wongkasemjit, S.: Preparation of zirconia powders by sol-gel route of sodium glycozirconate complex. Powder Technol. 148, 11 (2004).Google Scholar
32.Guo, G. and Chen, Y.: Unusual structural phase transition in nanocrystalline zirconia. Appl. Phys. A. 84, 431 (2006).Google Scholar
33.Mario, C., Elio, G. and Michel, C.: EPR characterization and reactivity of surface-localized inorganic radicals and radical ions. Chem. Rev. 110, 1320 (2010).Google Scholar
34.Dyrek, K. and Che, M.: EPR as a tool to investigate the transition metal chemistry on oxide surfaces. Chem. Rev. 97, 305 (1997).Google Scholar
35.Wang, F., Valentin, C., Pacchioni, G.: Doping of WO3 for photocatalytic water splitting: hints from density functional theory. J. Phys. Chem. C. 16, 8901 (2012).CrossRefGoogle Scholar
36.Heinz, G. and Frank, W.: Reaction of excited dye molecules at electrodes. Top. Curr. Chem. 61, 31 (1976).Google Scholar
Supplementary material: File

Chen supplementary material

Chen supplementary material 1

Download Chen supplementary material(File)
File 15.2 MB