Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T23:39:16.814Z Has data issue: false hasContentIssue false

X-Ray Probes for In Situ Studies of Interfaces

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Surfaces and buried interfaces play critical roles in many environmental, catalytic, and tribological processes and in a wide variety of applications, including microelectronics and optoelectronics. Interfacial structure and composition are closely coupled to their surroundings, and probes that yield information about materials in situ are essential to obtain a thorough understanding of interface functions and properties. The highly brilliant, hard x-rays available from synchrotron light sources can easily penetrate through gas or liquid environments, or even solid thin-film overlayers, and enable real-time monitoring of the evolving chemistry and structure of the interface with atomic-scale resolution. Here we review the in situ study of interfaces by a variety of synchrotron x-ray scattering techniques and provide several examples of their application in electrochemical processes and thin-film island growth. We also discuss recent advances in analytical techniques and x-ray optics that are facilitating the in situ study of surfaces and buried interfaces with direct imaging.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Andrews, S.R., Cowley, R.A., J. Phys. C: Solid State Phys. 18, 6427 (1985).Google Scholar
2.Feidenhans'l, R., Surf. Sci. Rep. 10, 105 (1989).Google Scholar
3.Fuoss, P.H., Brennan, S., Annu. Rev. Mater. Sci. 20, 365 (1990).CrossRefGoogle Scholar
4.Robinson, I.K., Tweet, D.J., Rep. Prog. Phys. 55, 599 (1992).CrossRefGoogle Scholar
5.Renaud, G., Surf. Sci. Rep. 32, 1 (1998).Google Scholar
6.Robinson, I., Harder, R., Nat. Mater. 8, 291 (2009).CrossRefGoogle Scholar
7.Renaud, G., Lazzari, R., Leroy, F., Surf. Sci. Rep. 64, 255 (2009).CrossRefGoogle Scholar
8.Yefanov, O.M., Zozulya, A.V., Vartanyants, I.A., Stangl, J., Mocuta, C., Metzger, T.H., Bauer, G., Boeck, T., Schmidbauer, M., Appl. Phys. Lett. 94, 123104 (2009).Google Scholar
9.Jiang, F., Munkholm, A., Wang, R.V., Streiffer, S.K., Thompson, C., Fuoss, P.H., Latifi, K., Elder, K.R., Stephenson, G.B., Phys. Rev. Lett. 101, 086102 (2008).Google Scholar
10.Hodeau, J., Favre-Nicolin, V., Bos, S., Renevier, H., Lorenzo, E., Berar, J., Chem. Rev. 101, 1843 (2001).CrossRefGoogle Scholar
11.Cross, J.O., Newville, M., Rehr, J.J., Sorensen, L.B., Bouldin, C.E., Watson, G., Gouder, T., Lander, G.H., Bell, M.I., Phys. Rev. B 58, 11215 (1998).CrossRefGoogle Scholar
12.Park, C., Fenter, P.A., Nagy, K.L., Sturchio, N.C., Phys. Rev. Lett. 97, 016101 (2006).CrossRefGoogle Scholar
13.Park, C., Fenter, P.A., J. Appl. Crystallogr. 40, 290 (2007).CrossRefGoogle Scholar
14.Walker, F.J., Specht, E.D., in Resonant Anomalous X-Ray Scattering: Theory and Applications, Materlik, G., Sparks, C.J., Fischer, K., Eds. (Elsevier, MO, 1994), p. 365.Google Scholar
15.Kumah, D.P., Shusterman, S., Paltiel, Y., Yacoby, Y., Clarke, R., Nat. Nanotechnol. 4, 835 (2009).Google Scholar
16.Specht, E., Walker, F., Phys. Rev. B 47, 13743 (1993).Google Scholar
17.Ferrer, S., Ackermann, M., Lundgren, E., MRS Bull. 32, 1010 (2007).CrossRefGoogle Scholar
18.Ryan, M.P., Toney, M.F., Davenport, A.J., Oblonsky, L.J., MRS Bull. 24, (7) 29 (1999).Google Scholar
19.Stephenson, G.B., Eastman, J.A., Auciello, O., Munkholm, A., Thompson, C., Fuoss, P.H., Fini, P., DenBaars, S.P., Speck, J.S., MRS Bull. 24, (1) 21 (1999).Google Scholar
20.You, H., Nagy, Z., MRS Bull. 24, (1) 36 (1999).Google Scholar
21.Samant, M.G., Toney, M.F., Borges, G.L., Blum, L., Melroy, O.R., J. Phys. Chem. 92, 220 (1988).CrossRefGoogle Scholar
22.Ocko, B.M., Wang, J., Davenport, A., Isaacs, H., Phys. Rev. Lett. 65, 1466 (1990).Google Scholar
23.Tidswell, I.M., Marković, N.M., Lucas, C.A., Ross, P.N., Phys. Rev. B 47, 16542 (1993).Google Scholar
24.Lucas, C.A., Marković, N.M., Grgur, B.N., Ross, P.N., Surf. Sci. 448, 65 (2000).Google Scholar
25.Lucas, C.A., Marković, N.M., Ross, P.N., Surf. Sci. 448, 77 (2000).CrossRefGoogle Scholar
26.Renner, F.U., Gründer, Y., Zegenhagen, J., Rev. Sci. Instrum. 78, 033903 (2007).CrossRefGoogle Scholar
27.Kitchin, J.R., Nørskov, J.K., Barteau, M.A., Chen, J.G., Phys. Rev. Lett. 93, 156801 (2004).CrossRefGoogle Scholar
28.Hammer, B., Nørskov, J.K., in Chemisorption and Reactivity on Supported Clusters and Thin Films, Lambert, R.M., Pacchioni, G., Eds. (Kluwer Academic Publishers, 1997), p. 285.Google Scholar
29.Stamenkovic, V.R., Arenz, M., Lucas, C.A., Gallagher, M.E., Ross, P.N., Marković, N.M., J. Am. Chem. Soc. 125, 2736 (2003).Google Scholar
30.Gallagher, M.E., Lucas, C.A., Stamenkovic, V., Marković, N.M., Ross, P.N., Surf. Sci. 544, L729 (2003).Google Scholar
31.Stamenkovic, V.R., Fowler, B., Mun, B.S., Wang, G., Ross, P.N., Lucas, C.A., Marković, N.M., Science 315, 493 (2007).CrossRefGoogle Scholar
32.Tidswell, I.M., Marković, N.M., Ross, P.N., J. Electroanal. Chem. 376, 119 (1994).Google Scholar
33.Lucas, C.A., Marković, N.M., Ross, P.N., Surf. Sci. 425, L381 (1999).CrossRefGoogle Scholar
34.Gallagher, M.E., Blizanac, B.B., Lucas, C.A., Ross, P.N., Marković, N.M., Surf. Sci. 582, 215 (2005).Google Scholar
35.Stamenkovic, V.R., Mun, B.S., Arenz, M., Mayrhofer, K.J.J., Lucas, C.A., Wang, G., Ross, P.N., Marković, N.M., Nat. Mater. 6, 241 (2007).CrossRefGoogle Scholar
36.Lucas, C.A., Cormack, M., Brownrigg, A., Thompson, P., Fowler, B., Gallagher, M.E., Grunder, Y., Roy, J., Stamenkovic, V.R., Marković, N.M., Faraday Discuss. 140, 41 (2009).Google Scholar
37.Brennan, S., Cowan, P.L., Rev. Sci. Instrum. 63, 850 (1992).CrossRefGoogle Scholar
38.Robinson, I.K., Phys. Rev. B 33, 3830 (1986).Google Scholar
39.Chu, Y.S., You, H., Tanzer, J.A., Lister, T.E., Nagy, Z., Phys. Rev. Lett. 83, 552 (1999).Google Scholar
40.Menzel, A., Chang, K.C., Komanicky, V., You, H., Chu, Y.S., Tolmachev, Y.V., Rehr, J.J., Radiat. Phys. Chem. 75, 1651 (2006).Google Scholar
41.Menzel, A., Tolmachev, Y., Chang, K., Komanicky, V., Chu, Y., Rehr, J., You, H., Europhys. Lett. 74, 1032 (2006).Google Scholar
42.Toney, M.F., Davenport, A.J., Oblonsky, L.J., Ryan, M.P., Vitus, C.M., Phys. Rev. Lett. 79, 4282 (1997).CrossRefGoogle Scholar
43.Davenport, A.J., Oblonsky, L.J., Ryan, M.P., Toney, M.F., J. Electrochem. Soc. 147, 2162 (2000).Google Scholar
44.Renner, F.U., Stierle, A., Dosch, H., Kolb, D.M., Lee, T.-L., Zegenhagen, J., Nature 439, 707 (2006).CrossRefGoogle Scholar
45.Renner, F.U., Stierle, A., Dosch, H., Kolb, D.M., Lee, T.L., Zegenhagen, J., Phys. Rev. B 77, 235433 (2008).Google Scholar
46.Erlebacher, J., Aziz, M.J., Karma, A., Dimitrov, N., Sieradzki, K., Nature 410, 450 (2001).CrossRefGoogle Scholar
47.Ratto, F., Costantini, G., Rastelli, A., Schmidt, O.G., Kern, K., Rosei, F., J. Exp. Nanosci. 1, 279 (2006).Google Scholar
48.Stangl, J., Holý, V., Bauer, G., Rev. Mod. Phys. 76, 725 (2004).Google Scholar
49.Medeiros-Ribeiro, G., Bratkovski, A.M., Kamins, T.I., Ohlberg, D.A., Williams, R.S., Science 279, 353 (1998).Google Scholar
50.Smith, D.J., Chandrasekhar, D., Chaparro, S.A., Crozier, P.A., Drucker, J., Floyd, M., McCartney, M.R., Zhang, Y., J. Cryst. Growth 259, 232 (2003).CrossRefGoogle Scholar
51.Sutter, P., Sutter, E., Ohno, T.R., Appl. Phys. Lett. 84, 2100 (2004).Google Scholar
52.Stoffel, M., Rastelli, A., Tersoff, J., Merdzhanova, T., Schmidt, O.G., Phys. Rev. B 74, 155326 (2006).Google Scholar
53.Richard, M.-I., Schülli, T.U., Renaud, G., Wintersberger, E., Chen, G., Bauer, G., Holý, V., Phys. Rev. B 80, 045313 (2009).CrossRefGoogle Scholar
54.Baudoing-Savois, R., De Santis, M., Saint-Lager, M.C., Dolle, P., Geaymond, O., Taunier, P., Jeantet, P., Roux, J.P., Renaud, G., Barbier, A., Robach, O., Ulrich, O., Mougin, A., Bérard, G., Nucl. Instrum. Methods Phys. Res., Sect. B 149, 213 (1999).Google Scholar
55.Rauscher, M., Paniago, R., Metzger, H., Kovats, Z., Domke, J., Peisl, J., Pfannes, H.-D., Schulze, J., Eisele, I., J. Appl. Phys. 86, 6763 (1999).Google Scholar
56.Coraux, J., Renevier, H., Favre-Nicolin, V., Renaud, G., Daudin, B., Appl. Phys. Lett. 88, 153125 (2006).Google Scholar
57.Coraux, J., Proietti, M., Favre-Nicolin, V., Renevier, H., Daudin, B., Phys. Rev. B 73, 205343 (2006).CrossRefGoogle Scholar
58.Coraux, J., Favre-Nicolin, V., Proietti, M.G., Daudin, B., Renevier, H., Phys. Rev. B 75, 235312 (2007).CrossRefGoogle Scholar
59.Metzger, T., Favre-Nicolin, V., Renaud, G., Renevier, H., Schülli, T., in Characterization of Semiconductor Heterostructures and Nanostructures, Lamberti, C., Ed. (Elsevier, MO, 2008), p. 331.Google Scholar
60.Proietti, M.G., Coraux, J., Renevier, H., in Characterization of Semiconductor Heterostructures and Nanostructures, Lamberti, C., Ed. (Elsevier, MO, 2008), p. 371.CrossRefGoogle Scholar
61.Richard, M.I., Katcho, N.A., Proietti, M.G., Renevier, H., Favre-Nicolin, V., Zhong, Z., Chen, G., Stoffel, M., Schmidt, O., Renaud, G., Schülli, T.U., Bauer, G., Eur. Phys. J. 167, 3 (2009).Google Scholar
62.Kegel, I., Metzger, T.H., Lorke, A., Peisl, J., Stangl, J., Bauer, G., Nordlund, K., Schoenfeld, W.V., Petroff, P.M., Phys. Rev. B 63, 035318 (2001).Google Scholar
63.Newville, M., Ravel, B., Haskel, D., Rehr, J.J., Stern, E.A., Yacoby, Y., Physica B 208–209, 154 (1995).Google Scholar
64.Vlieg, E., J. Appl. Cryst. 30, 532 (1997).Google Scholar
65.Schlepütz, C.M., Herger, R., Willmott, P.R., Patterson, B.D., Bunk, O., Brönnimann, C., Henrich, B., Hülsen, G., Eikenberry, E.F., Acta Crystallogr., Sect. A: Found. Crystallogr. 61, 418 (2005).Google Scholar
66.Vlieg, E., J. Appl. Crystallogr. 33, 401 (2000).Google Scholar
67.Bunk, O., PhD Thesis, University of Hamburg, Department of Physics (1999).Google Scholar
68.Björck, M., Andersson, G., J. Appl. Crystallogr. 40, 1174 (2007).Google Scholar
69.Martínez-Blanco, J., Joco, V., Quirós, C., Segovia, P., Michel, E.G., J. Phys. Condens. Matter 21, 134011 (2009).Google Scholar
70.Hendrickson, W.A., Science 254, 51 (1991).CrossRefGoogle Scholar
71.Chapman, L.D., Yoder, D.R., Colella, R., Phys. Rev. Lett. 46, 1578 (1981).Google Scholar
72.Shen, Q., Phys. Rev. Lett. 80, 3268 (1998).Google Scholar
73.Zhang, Z., Fenter, P., Cheng, L., Sturchio, N.C., Bedzyk, M.J., Machesky, M.L., Wesolowski, D.J., Surf. Sci. 554, L95 (2004).Google Scholar
74.Faigel, G., Tegze, M., Rep. Prog. Phys. 62, 355 (1999).Google Scholar
75.Sayre, D., Acta Crystallogr. 5, 60 (1952).Google Scholar
76.Hauptman, H., Karle, J., American Crystallographic Association Monograph, No. 3 (1953).Google Scholar
77.Sayre, D., Struct. Chem. 13, 81 (2002).Google Scholar
78.Vartanyants, I., Ern, C., Donner, W., Dosch, H., Caliebe, W., Appl. Phys. Lett. 77, 3929 (2000).Google Scholar
79.Fenter, P., Zhang, Z., Phys. Rev. B 72, 081401 (R) (2005).Google Scholar
80.Marchesini, S., Rev. Sci. Instrum. 78, 011301 (2007).Google Scholar
81.Elser, V., Acta Crystallogr., Sect. A: Found. Crystallogr. 59, 201 (2003).CrossRefGoogle Scholar
82.Gerchberg, R.W., Saxton, W.O., Optik 35, 237 (1972).Google Scholar
83.Fienup, J., Opt. Lett. 3, 27 (1978).Google Scholar
84.Fienup, J., Appl. Opt. 21, 2758 (1982).Google Scholar
85.Elser, V., J. Opt. Soc. Am. A 20, 40 (2003).CrossRefGoogle Scholar
86.Björck, M., Schlepütz, C.M., Pauli, S.A., Martoccia, D., Herger, R., Willmott, P.R., J. Phys. Condens. Matter 20, 445006 (2008).Google Scholar
87.Saldin, D.K., Harder, R., Vogler, H., Moritz, W., Robinson, I.K., Comput. Phys. Commun. 137, 12 (2001).Google Scholar
88.Takahashi, T., Sumitani, K., Kusano, S., Surf. Sci. 493, 36 (2001).Google Scholar
89.Sumitani, K., Takahashi, T., Nakatani, S., Nojima, A., Sakata, O., Yoda, Y., Koh, S., Irisawa, T., Shiraki, Y., Jpn. J. Appl. Phys. 42, L189 (2003).Google Scholar
90.Yacoby, Y., Pindak, R., MacHarrie, R., Pfeiffer, L., Berman, L., Clarke, R., J. Phys. Condens. Matter 12, 3929 (2000).Google Scholar
91.Sowwan, M., Yacoby, Y., Cross, J., Walko, D.A., Clarke, R., Pindak, R., Stern, E.A., Phys. Rev. B 66, 205311 (2002).Google Scholar
92.Willmott, P.R., Pauli, S.A., Herger, R., Schlepütz, C.M., Martoccia, D., Patterson, B.D., Delley, B., Clarke, R., Kumah, D., Cionca, C., Yacoby, Y., Phys. Rev. Lett. 99, 155502 (2007).Google Scholar
93.Zhou, H., Yacoby, Y., Butko, V.Y., Logvenov, G., Bozovic, I., Pindak, R., Proc. Nat. Acad. Sci. 107, 8103 (2010).Google Scholar
94.Fenter, P., Park, C., Zhang, Z., Wang, S., Nat. Phys. 2, 700 (2006).Google Scholar
95.Fenter, P., Park, C., Kohli, V., Zhang, Z., J. Synchrotron Radiat. 15, 558 (2008).Google Scholar
96.Segal, Y., Reiner, J.W., Kolpak, A.M., Zhang, Z., Ismail-Beigi, S., Ahn, C.H., Walker, F.J., Phys. Rev. Lett. 102, 116101 (2009).Google Scholar