Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-30T19:06:39.908Z Has data issue: false hasContentIssue false

Visualizing the Behavior of Dislocations—Seeing is Believing

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The spatial resolution of the transmission electron microscope makes it an ideal environment in which to continuously track the real-time response of a system to an external stimulus and to discover and quantify the rate-limiting fundamental microscopic processes and mechanisms governing the macroscopic properties. Advances in instrumentation, stage design, recording media, computational power, and image manipulation software are providing new opportunities for not only observing the microscopic mechanisms but also measuring concurrently the macroscopic response. In this article, the capability of this technique as applied to mechanical properties of materials is highlighted.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hirsch, P.B., Horne, R.W., and Whelan, M.J., Phil. Mag. A 1, 677 (1956).CrossRefGoogle Scholar
2.Butler, E.P., Reports Prog. Phys. 42, 833 (1979).CrossRefGoogle Scholar
3.Wilsdorf, H.G.F., ASTM Spec. Tech. 245, 43 (1958).Google Scholar
4.Messerschmidt, U. and Appel, F., Ultra-microscopy 1, 223 (1976).Google Scholar
5.Haque, M.A. and Saif, M.T.A., J. Microelectromechanical Syst. 10, 146 (2001).CrossRefGoogle Scholar
6.Zhu, Y. and Espinosa, H.D., Proc. Nat. Acad. Sci. 102, 14503 (2005).CrossRefGoogle Scholar
7.Hattar, K., Han, J., Saif, M.T.A., and Robertson, I.M., J. Mater. Res. 20, 1869 (2005).CrossRefGoogle Scholar
8.Haque, M.A. and Saif, M.T.A., Scripta Mater. 47, 863 (2002).CrossRefGoogle Scholar
9.Haque, M.A. and Saif, M.T.A., Proc. Nat. Acad. Sci. 101, 6335 (2004).CrossRefGoogle Scholar
10.Rajagopalan, L., Han, J.H., and Saif, M.T.A., Science 315, 1831 (2007).CrossRefGoogle Scholar
11.Golberg, D., Costa, P.M.F.J., Lourie, O., Mitome, M., Bai, X., Kurashima, K., Zhi, C., Tang, C., and Bando, Y., Nano Letters 7, 2146 (2007).CrossRefGoogle Scholar
12.Golberg, D., Bai, X.D., Mitome, M., Tang, C.C., Zhi, C.Y., and Bando, Y., Acta Mater. 55, 1293 (2007).CrossRefGoogle Scholar
13.Imura, T., High Voltage Electron Microscopy, Swann, P.R., Goringe, M.J., and Humphreys, C.J., Eds., 179 (London, Academic, 1974).Google Scholar
14.Saka, H. and Imura, T., J. Phys. Soc. Japan 32, 702 (1972).CrossRefGoogle Scholar
15.Loretto, M.H.. Observation and Characterisation of Dislocations. Dislocations and Properties of Real Materials 323, 15 (London, The Institute of Metals, 1985).Google Scholar
16.Lee, T.C., Robertson, I.M., and Birnbaum, H.K., Acta Metall. et Mater. 40, 2569 (1992).CrossRefGoogle Scholar
17.Benyoucef, M., Coujou, A., Barbker, B., and Clement, N., Mater. Sci. Eng. A 234–236, 692 (1997).CrossRefGoogle Scholar
18.Zghal, S., Coujou, A., and Couret, A., Diffusion and Defect Data Pt. B 59–60, 165 (1998).Google Scholar
19.Hsiung, L.M., Schwartz, A.J., and Nieh, T.G., Scripta Mater. 36, 1017 (1997).CrossRefGoogle Scholar
20.Haeussler, D., Messerschmidt, U., Bartsch, M., Appel, F., and Wagner, R., Mater. Sci. & Engin. A 233, 15 (1997).CrossRefGoogle Scholar
21.Baufeld, B., Baither, D., Messerschmidt, U., and Bartsch, M., Phys. Stat. Sol. (A) 150, 297 (1995).CrossRefGoogle Scholar
22.Gemperlova, J., Jacques, A., Gemperle, A., and Zarubova, N.. Interface Science 10, 51 (2002).CrossRefGoogle Scholar
23.Clark, W.A.T., Wise, C.E., Shen, Z., and Wagoner, R.H., Ultramicroscopy 30, 76 (1989).CrossRefGoogle Scholar
24.Baillin, X., Pelissier, J., Jacques, A., and George, A., Phil. Mag. A 61, 329 (1990).CrossRefGoogle Scholar
25.LeGoues, F.K., Reuter, M.C., Tersoff, J., Hammar, M., and Tromp, R.M., Phys. Rev. Lett. 73, 300 (1994).CrossRefGoogle Scholar
26.Lee, T.C., Robertson, I.M., and Birnbaum, H.K., Metall. Trans. A 21, 2437 (1990).CrossRefGoogle Scholar
27.Shirokofff, J. and Robertson, I.M., unpublished work.Google Scholar
28.Jin, M., Minor, A.M., Stach, E.A., and Morris, J.W. Jr,, Acta Mater. 52, 5381 (2004).CrossRefGoogle Scholar
29.Jin, M., Minor, A.M., and Morris, J.W. Jr, Thin Solid Films 515, 3202 (2007).CrossRefGoogle Scholar
30.Gerberich, W.W., Mook, W.M., Chambers, M.D., Cordill, M.J., Perrey, C.R., Carter, C.B., Miller, R.E., Curtin, W.A., Mukherjee, R., and Girshick, S.L., Trans ASME. J. Appl. Mechs. 73, 327 (2006).CrossRefGoogle Scholar
31.Minor, A.M., Asif, S.A.S., Shan, Z.W., Stach, E.A., Cyrankowski, E., Wyrobek, T., and Warren, O., Nature Mat. 5, 697 (2006).CrossRefGoogle Scholar
32.Deneen, J., Mook, W.M., Minor, A., Gerberich, W.W., and Carter, C.B., J. Mater. Sci. 41, 4477 (2006).CrossRefGoogle Scholar
33.Li, J., Vliet, K.J.V., Zhu, T., Yip, S., and Suresh, S., Nature Mat. 418, 307 (2002).CrossRefGoogle Scholar
34.Nowak, J.D., Mook, W.M., Minor, A.M., Gerberich, W.W., and Carter, C.B., Phil. Mag. 87, 29 (2007).CrossRefGoogle Scholar
35.Cordill, M.J., Chambers, M.D., Lund, M.S., Hallman, D.M., Perrey, C.R., Carter, C.B., Bapat, A., Kortshagen, U., and Gerberich, W.W., Acta Mater. 54, 4515 (2006).CrossRefGoogle Scholar
36.Carlton, C.E. and Ferreira, P.J., MRS 2005 Fall Meeting, Boston, MA 903E, 0903 (2005).Google Scholar
37.Dieter, G.E., Mechanical Metallurgy (New York, McGraw-Hill, 1986).Google Scholar
38.Xiang, Y., Srolovitz, D.J., and Cheng, L.T., Acta Mater. 52, 1745 (2004).CrossRefGoogle Scholar
39.Xiang, Y. and Srolovitz, D.J., Phil. Mag. 86, 3937 (2006).CrossRefGoogle Scholar
40.Clark, B.G., Robertson, I.M., Dougherty, L.M., Ahn, D.C., and Sofronis, P., J. Mater. Res. 20, 1792 (2005).CrossRefGoogle Scholar
41.Rösler, J. and Arzt, E., Acta Metall. et Mater. 38, 671 (1990).CrossRefGoogle Scholar
42.Arzt, E., Dehm, G., Gumbsch, P., Kraft, O., and Weiss, D.. Prog. Mater. Sci. 46, 283 (2001).CrossRefGoogle Scholar
43.Marquis, E.A., Seidman, D.N., and Dunand, D.C., Acta Mater. 50, 4021 (2002).Google Scholar
44.Seidman, D.N., Fuller, C.B., Murray, J.L., Acta Mater. 53, 5401 (2005).Google Scholar
45.Robertson, I.M. and Teter, D., Miscrosc. Res. Tech. 42, 260 (1998).3.0.CO;2-U>CrossRefGoogle Scholar
46.Robertson, I.M., Enginr. Fract. Mech. 68, 671 (2001).CrossRefGoogle Scholar
47.Birnbaum, H.K. and Sofronis, P., Mater. Sci. Eng. A, Struct. Mater., Prop. Microstruct. Process. A176, 191 (1993).Google Scholar
48.Lufrano, J., Sofronis, P., and Birnbaum, H.K., J. Mech. Phys. Solids 44, 179 (1996).CrossRefGoogle Scholar
49.Sofronis, P. and Robertson, I.M., Phil. Mag. A 82, 3405 (2002).CrossRefGoogle Scholar
50.Liang, Y., Sofronis, P., and Aravas, N., Acta Mater. 51, 2717 (2003).CrossRefGoogle Scholar
51.Roberto, J. and Rubia, Tomas Diaz de la, http://www.sc.doe.gov/bes/reports/files/ANES_rpt.pdf. (2006) (accessed January 2008).Google Scholar
52.Wirth, B.D., Bulatov, V.V., and Rubia, T. De La Diaz, J. Engr. Mater.& Techn. 124, 329 (2002).CrossRefGoogle Scholar
53.Robach, J.S., Robertson, I.M., Wirth, B.D., and Arsenlis, A., Phil. Mag. A 83, 955 (2003).CrossRefGoogle Scholar
54.Matsukawa, Y., Osetsky, Y.N., Stoller, R.E., and Zinkle, S.J., JOM 56, 347 (2004).Google Scholar
55.Robertson, I.M., Beaudoin, A., Al-Fadhalah, K., Chun-Ming, L., Robach, J., Wirth, B.D., Arsenlis, A., Ahn, D., and Sofronis, P.. Mater. Sci. & Engin. A 400–401, 245 (2005).CrossRefGoogle Scholar
56.Matsukawa, Y., Osetsky, Y.N., Stoller, R.E., and Zinkle, S.J., J. Nucl.Mater. 351, 285 (2006).CrossRefGoogle Scholar
57.Robach, J.S., Robertson, I.M., Lee, H.J., Wirth, B.D., Acta Mater. 54, 1679 (2006).CrossRefGoogle Scholar
58.Ghoniem, N.M., Tong, S.H., Huang, J., Singh, B.N., and Wen, M., J. Nucl.Mater. 307–311, 843 (2002).CrossRefGoogle Scholar
59.Singh, B.N., Foreman, A.J.E., and Trinkaus, H., J. Nucl.Mater. 249, 103 (1997).CrossRefGoogle Scholar
60.Sun, L.Z., Ghoniem, N.M., Tong, S.H., and Singh, B.N., J. Nucl.Mater. 283–287 pt. B, 741 (2000).CrossRefGoogle Scholar
61.Arsenlis, A., Wirth, B.D., Rhee, M., Phil. Mag. 84, 3617 (2004).CrossRefGoogle Scholar
62.Ross, F.M., Hull, R., Bahnck, D., Bean, J.C., Peticolas, L. J., and King, C.A., Appl. Phys. Lett. 62 1426 (1993).CrossRefGoogle Scholar
63.Bean, J.C., Feldman, L.C., Fiory, A.T., Nakahara, S., Robinson, I.K., GexSi1 -x/Si Strained-Layer Superlattice Grown by Molecular Beam Epitaxy, 2 436 (Boston, MA, USA, 1984).Google Scholar
64.Hull, R., Bean, J.C., Werder, D.J., and Leibenguth, R.E.. Phys. Rev. B 40, 1681 (1989)CrossRefGoogle Scholar
65.Hull, R., and Bean, J.C.. J. Vac. Sci. & Tech A 7, 2580 (1989).CrossRefGoogle Scholar
66.Hull, R., Bean, J.C., and Buescher, C., J. Appl. Phys. 66, 837 (1989).CrossRefGoogle Scholar
67.Nix, W.A., Noble, D.B., Turlo, J.F., Proc. Mat. Res. Soc. 188, 315 (1990).CrossRefGoogle Scholar
68.Imai, M. and Sumino, K., Phil. Mag. A47, 599. (1983).Google Scholar
69.Dodson, B.W. and Tsao, J.Y., Appl. Phys. Lett. 51, 1325 (1987).CrossRefGoogle Scholar
70.Hull, R., Bean, J.C., Peticolas, L., Bahnck, D., and Unterwald, F., J. Appl. Phys. 70, 2052 (1990).CrossRefGoogle Scholar
71.Hull, R. and Bean, J.C., Phys. Stat. Sol. (A) 138, 533 (1993).CrossRefGoogle Scholar
72.Louchet, F., Brechet, Y., Pelissier, J., and Muchy, D.C., Phil. Mag. A 57, 327 (1988).CrossRefGoogle Scholar
73.Inoue, M., Suzuki, K., Amasuga, H., Mera, Y., and Maeda, K., J. Appl. Phys. 83, 1953 (1998).CrossRefGoogle Scholar
74.Kolar, H.R., Spence, J.C.H., Alexander, H., Phys. Rev. Lett. 77, 4031 (1996).CrossRefGoogle Scholar
75.Orowan, E.. Proc. Phys. Soc. 52, 8 (1940).CrossRefGoogle Scholar
76.Houghton, D.C., J. Appl. Phys. 70, 2136 (1991).CrossRefGoogle Scholar
77.Perovic, D.D. and Houghton, D.C., Proc. Mat. Res Soc. 263, 391 (1992).CrossRefGoogle Scholar
78.Stach, E.A., Schwarz, K.W., Hull, R., Ross, F.M., and Tromp, R.M., Phys. Rev. Lett. 84, 947 (2000).CrossRefGoogle Scholar
79.Hull, R. and Bean, J.C.. Appl. Phys. Lett. 54, 925 (1989).CrossRefGoogle Scholar
80.Freund, L.B., J. Appl. Phys. 68, 2073 (1990).CrossRefGoogle Scholar
81.Schwarz, K.W., Phys. Rev. Lett. 78, 4785 (1997).CrossRefGoogle Scholar
82.Gosling, T.J., Jain, S.C., Willis, J.R., Atkinson, A., and Bullough, R., Phil. Mag. A66, 119 (1992).CrossRefGoogle Scholar
83.Nix, W.D., Metall. Trans. A 20, 2217 (1989).CrossRefGoogle Scholar
84.Arzt, E., Acta Mater. 46, 5611 (1998).CrossRefGoogle Scholar
85.Baker, S.P., Mater. Sci. & Engin. A 319–321, 16 (2001).CrossRefGoogle Scholar
86.Wellner, P., Kraft, O., Dehm, G., Andersons, J., and Arzt, E., Acta Mater. 52, 2325 (2004).CrossRefGoogle Scholar
87.Choi, Y. and Suresh, S., Acta Mater. 50, 1881 (2002).CrossRefGoogle Scholar
88.Kumar, K.S., Suresh, S., Chisholm, M.F., Horton, J.A., and Wang, P., Acta Mater. 51, 387 (2003).CrossRefGoogle Scholar
89.Eiper, E., Keckes, J., Martinschitz, K.J., Zizak, I., Cabie, M., and Dehm, G., Acta Mater. 55, 1941 (2007).CrossRefGoogle Scholar
90.Venkatraman, R., Bravman, J.C., Nix, W.D., Davies, P.W., Flinn, P.A., and Fraser, D.B., J. Electron. Mater. 19, 1231 (1990).CrossRefGoogle Scholar
91.Kraft, O., Hommel, M., and Arzt, E., Mater. Sci. Eng. A, A288, 209 (2000).CrossRefGoogle Scholar
92.Dehm, G., Balk, T.J., Edongue, H., and Arzt, E., Microelectronic Engineering 70, 412 (2003).CrossRefGoogle Scholar
93.Dehm, G., Wagner, T., Balk, T.J., Arzt, E., and Inkson, B.J., J. Mater Sci. and Tech. 18, 113 (2002).Google Scholar
94.Inkson, B.J., Dehm, G., and Wagner, T., Acta Mater. 50, 5033 (2002).CrossRefGoogle Scholar
95.Dehm, G. and Arzt, E., Appl. Phys. Lett. 77, 1126 (2000).CrossRefGoogle Scholar
96.Legros, M., Dehm, G., Balk, T.J., Arzt, E., Bostrom, O., Gergaud, P., Thomas, O., and Kaouache, B., Plasticity-Related Phenomena in Metallic Films on Substrates 63 (San Francisco, CA, Mater. Res. Soc, 2003).Google Scholar
97.Dehm, G., Motz, C., Scheu, C., Clemens, H., Mayrhofer, P.H., and Mitterer, C.. Advanced Engineering Materials 8, 1033 (2006).CrossRefGoogle Scholar
98.Deok-kee, K., Nix, W.D., Vinci, R.P., Deal, M.D., and Plummer, J.D., J. Appl. Phys. 90, 781 (2001).Google Scholar
99.Gao, H., Zhang, L., Nix, W.D., Thompson, C.V., and Arzt, E., Acta Mater. 47, 2865 (1999).CrossRefGoogle Scholar
100.Balk, T.J., Dehm, G., and Arzt, E., Parallel Glide: A Fundamentally Different Type of Dislocation Motion in Ultrathin Metal Films 779, 87 (San Francisco, CA, Materials Research Society, 2003).Google Scholar
101.Dehm, G., Legros, M., and Heiland, B.. J. Mater. Sci. 41, 4484 (2006).CrossRefGoogle Scholar
102.Oh, S.H., Legros, M., Kiener, D., Gruber, P., and Dehm, G., Acta Mater. 55, 5558 (2007).CrossRefGoogle Scholar
103.Balk, T.J., Dehm, G., and Arzt, E., Acta Mater. 51, 4471 (2003).CrossRefGoogle Scholar
104.Chen, M., Ma, E., Hemker, K.J., Sheng, H., Wang, Y., and Cheng, X.. Science 300, 1275 (2003).CrossRefGoogle Scholar
105.Hattar, K., Han, J.H., Follstaedt, D.M., Hearne, S.J., Saif, T.A., and Robertson, I.M., Length Scale Effects on Deformation and Failure Mechanisms of Ultra-Fine Grained Aluminum 907, 1 (Boston, MA, Materials Research Society, 2005).Google Scholar