Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-05T08:41:24.008Z Has data issue: false hasContentIssue false

Transparent Oxyfluoride Glass Ceramics

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Low-phonon energy glasses are desirable hosts for rare-earth (RE) ions because they enable emission from RE energy levels that would otherwise be quenched in high-phonon energy glasses. Such emissions are of interest for fiber amplifiers operating at telecommunications wavelength band s of 1.31, 1.46, and 1.55 μm, and for up-conversion lasers and three-dimensional displays.

Phonons are optical-frequency molecular vibrations in a material. If the RE energy level of interest lies only a few phonons in energy above the next lower lying level such as the 1G4 level of Pr3+, which is only 3,000 cm −1 above the 3F4, only three Si—O vibrational phonons (1,100 cm−1) are required to bridge the gap as shown in Figure 1. Thus any electrons excited to the 1G4 level via an external pump source will be deexcited to the 3F4 on down to the 3H4 ground state via phonons, and no radiation of usable light will be produced. This is why emission from the 1G4 level of Pr3+ is absent in silicates and why researchers have gone to great lengths to make low-phonon energy glasses.

Type
New Functionality in Glass
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Stookey, S.D., Glastech. Ber. 32 (1959) p. 1;Google Scholar
Stookey, S.D., Ind. Eng. Chem. 51 (7) (1959) p. 805.CrossRefGoogle Scholar
2.Stookey, S.D., Patent, U.S. NO. 3,157,522 (november 17, 1964).Google Scholar
3.Wang, Y. and Ohwaki, H., Appl. Phys. Lett. 63 (24) (1993) p. 3268.CrossRefGoogle Scholar
4.Tick, P.A., Borelli, N.F., Cornelius, L.K., and Newhouse, M.A., J. Appl. Phys. 78 (11) (1995) p. 6367.CrossRefGoogle Scholar
5.Hirao, K., Tanaka, K., Makita, M., and Soga, N., J. Appl. Phys. 78 (5) (1995) p. 3445.CrossRefGoogle Scholar
6.Qiu, J., Sugimoto, N., and Hirao, K., J. Mater. Sci. Lett. 15 (1996) p. 1641.CrossRefGoogle Scholar
7.Kawamoto, Y., Kanno, R., and Qiu, J., J. Mater. Sci. 33 (1998) p. 63.CrossRefGoogle Scholar
8.Dejneka, M. and Tyndell, B., Presented at American Ceramic Society Meeting, Cincinnati, Oh, May 5-9, 1997.Google Scholar
9.Kudryavteseva, O.V., Garashina, L.S., Rivkina, K.K., and Sobolev, B.P., Sov. Phys. Crystallogr. 18 (4) (1974) p. 531.Google Scholar
10.Weber, M.J., J. Chem. Phys. 48 (1968) p. 4774.CrossRefGoogle Scholar
11.Dejneka, M., Snitzer, E., and Riman, R.E., J. Lumin. 65 (1995) p. 227 and References therein.CrossRefGoogle Scholar
12.Dejneka, M., J. Non-Cryst. Solids IN PRESS.Google Scholar
13.Dejneka, M., in Proc. Spie, Rare Earth Doped Devices II, Vol. 3280 (Society of Photo-Instrumentation Engineers, Bellingham, Wa, 1998) p. 132.CrossRefGoogle Scholar
14.Dejneka, M., in Proc. XVIII Int. Congress on Glass (American Ceramic Society, Westerville, Oh, 1998) p. C9;1.Google Scholar
15.Tick, P.A., presented at XVIII International Congress on Glass, San Francisco, 1998.Google Scholar
16.Dotsenko, A., Efremov, A., Kuchinsky, S., and Prassas, M., in Proc. XVIII Int. Congress on Glass (American Ceramic Society, Westerville, Oh, 1998) p. C11;54.Google Scholar
17.Qiu, J., Maeda, K., and Terai, R., Phys. Chem. Glasses 36 (2) (1995) p. 70.Google Scholar
18.Tsuneoka, T., Kojima, K., and Bojja, S., Phys. Chem. Glasses 37 (3) (1996) p. 97.Google Scholar
19.Jacquier, B., Linares, C., Mahiou, R., Adam, L., Denoue, E., and Lucas, J., J. Lumin. 60/61 (1994) p. 175.CrossRefGoogle Scholar
20.Reddy, B., Nash-Stevenson, S., and Venkateswarlu, P., J. Opt. Soc. Am. B 11 (5) (1994) p. 923.CrossRefGoogle Scholar
21.Shikida, A., Yanagita, H., and Toratani, H., J. Opt. Soc. Am. B 11 (5) (1994) p. 928.CrossRefGoogle Scholar
22.Ohwaki, J. and Wang, Y., Jpn. J. Appl. Phys. 33 (1994) P. L334.Google Scholar
23.Downing, E., Hesselink, L., Raison, J., and Macfarlane, R., Science 273 (1996) p. 1185.CrossRefGoogle Scholar