Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-30T19:01:31.812Z Has data issue: false hasContentIssue false

Transparent glass-ceramics for optical applications

Published online by Cambridge University Press:  06 March 2017

O. Dymshits
Affiliation:
NITIOM Vavilov State Optical Institute, Russia; [email protected]
M. Shepilov
Affiliation:
NITIOM Vavilov State Optical Institute, Russia; [email protected]
A. Zhilin
Affiliation:
NITIOM Vavilov State Optical Institute, Russia; [email protected]
Get access

Abstract

The design, properties, and applications of transparent glass-ceramics are reviewed. Interference effects in light scattering by transparent glass-ceramics are discussed. The scattering coefficient of transparent glass-ceramics is found to be significantly less than that for the case of independent Rayleigh scattering by nanocrystals; its wavelength dependence is qualitatively different. A reduction in interference effects achieved by precipitation of nanocrystals of different crystalline phases with different scattering properties results in glass-ceramics with high diffuse reflection. The origin of the low coefficient of thermal expansion of glass-ceramics is discussed based on the temperature dependence of the unit cell parameters of β-quartz solid solutions measured by in situ high-temperature x-ray diffraction. Transparent glass-ceramics doped with Co2+ and Ni2+ ions for thermal shock-resistant color filters, for broadband near-infrared (IR) optical amplifiers, and for passive Q-switching of eye-safe Er lasers are presented. Glass-ceramics with rare-earth titanates, titanates-zirconates, and niobates in dual roles of nucleators and active crystals are reviewed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Prado, M.O., Zanotto, E.D., C. R. Chim. 5, 773 (2002).CrossRefGoogle Scholar
Komatsu, T., J. Non Cryst. Solids 428, 156 (2015).CrossRefGoogle Scholar
Qiu, J., Int. J. Appl. Glass Sci. 7, 270 (2016).Google Scholar
Downey, K.E., Samson, B.N., Beall, G.H., Mozdy, E.J., Pinckney, L.R., Borrelli, N.F., Mayolet, A., Conf. Lasers Electro-Opt. 56, 211 (2001).Google Scholar
Mashinsky, V.M., Karatun, N.M., Bogatyrev, V.A., Sigaev, V.N., Golubev, N.V., Ignat’eva, E.S., Lorenzi, R., Paleari, A., Dianov, E.M., Microsc. Microanal. 18, 259 (2012).CrossRefGoogle Scholar
Beall, G.H., Duke, D.A., J. Mater. Sci. 4, 340 (1969).CrossRefGoogle Scholar
Beall, G.H., Pinckney, L.R., J. Am. Ceram. Soc. 82, 5 (1999).CrossRefGoogle Scholar
Berthier, T., Fokin, V.M., Zanotto, E.D., J. Non Cryst. Solids 354, 1721 (2008).CrossRefGoogle Scholar
Shepilov, M.P., Dymshits, O.S., Golubkov, V.V., Zhilin, A.A., Adv. Mater. Res. 39–40, 273 (2008).CrossRefGoogle Scholar
Alekseeva, I.P., Dymshits, O.S., Zhilin, A.A., Zapalova, S.S., Shepilov, M.P., Golubkov, V.V., Kalmykov, A.E., Myacoedov, A.V., J. Opt. Technol. 81, 729 (2014).Google Scholar
Zhu, S., Ma, H., Calvez, L., Zhang, X., Lucas, J., Adam, J.-L., Shang, H., Rouxel, T., J. Non Cryst. Solids 353, 1298 (2007).CrossRefGoogle Scholar
Chavoutier, M., Caurant, D., Majérus, O., Boulesteix, R., Loiseau, P., Jousseaume, C., J. Non Cryst. Solids 384, 15 (2014).Google Scholar
Andreev, N.S., J. Non Cryst. Solids 30, 99 (1978).Google Scholar
Shepilov, M.P., Phys. Chem. Glasses 46, 173 (2005).Google Scholar
Shepilov, M.P., Opt. Mater. 31, 385 (2008).Google Scholar
Bortkevich, A.V., Varshavchik, M.L., Dymshits, O.S., Zhilin, A.A., Leykin, S.M., Polushkin, A.Y., Seredenko, M.M., Chuvaeva, T.I., Shashkin, A.V., J. Opt. Technol. 64 (8), 111 (1997).Google Scholar
Höland, W., Beall, G.H., Eds., Glass-Ceramic Technology, 2nd ed. (The American Ceramic Society/Wiley, New York, 2012).CrossRefGoogle Scholar
Bach, H., Krause, D., Eds., Low Thermal Expansion Glass Ceramics, 2nd ed. (Springer-Verlag Berlin Heidelberg, 2005).Google Scholar
Chenu, S., Véron, E., Genevois, C., Matzen, G., Cardinal, T., Etienne, A., Massiot, D., Allix, M., Adv. Opt. Mater. 2, 364 (2014).Google Scholar
Zhuang, Y., Ueda, J., Tanabe, S., Appl. Phys. Lett. 105, 191904 (2014).Google Scholar
Pinckney, L.R., Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B 47, 127 (2006).Google Scholar
Wang, Y., Ohwaki, J., Appl. Phys. Lett. 63, 3268 (1993).Google Scholar
de Pablos-Martín, A., Duran, A., Pascual, M.J., Int. Mater. Rev. 57, 165 (2012).CrossRefGoogle Scholar
Fedorov, P.P., Luginina, A.A., Popov, A.I., J. Fluor. Chem. 172, 22 (2015).Google Scholar
Qiu, J., Jiao, Q., Zhou, D., Yang, Z., J. Rare Earths 34, 341 (2016).CrossRefGoogle Scholar
Komatsu, T., Honma, T., Int. J. Appl. Glass Sci. 4, 125 (2013).CrossRefGoogle Scholar
Borrelli, N.F., J. Appl. Phys. 38, 4243 (1967).Google Scholar
Jain, H., Ferroelectrics 306, 111 (2004).Google Scholar
Fujita, S., Tanabe, S., Int. J. Appl. Glass Sci. 6, 356 (2015).Google Scholar
Edgar, A., Spaeth, J.M., Schweizer, S., Assmann, S., Newman, P.J., MacFarlane, D.R., Appl. Phys. Lett. 75, 2386 (1999).CrossRefGoogle Scholar
Calvez, L., “Transparent Chalcogenide Glass-Ceramics,” in Chalcogenide Glasses, Preparation, Properties and Applications, Adam, J.-L., Zhang, X., Eds. (Woodhead Publishing, Oxford, UK, 2014).Google Scholar
Ferrari, M., Righini, G.C., Int. J. Appl. Glass Sci. 6, 240 (2015).CrossRefGoogle Scholar
Beall, G.H., Int. J. Appl. Glass Sci. 5, 93 (2014).Google Scholar
Zanotto, E.D., Am. Ceram. Soc. Bull. 89, 19 (2010).Google Scholar
Rüssel, C., Bocker, C., Stoica, M., Thieme, K., Keshavarzi, A., J. Chem. Technol. Metall. 50, 357 (2015).Google Scholar
Artukh, E., Astakhova, V., Zhilin, A., Filatov, C., Chuvaeva, T., Inorg. Mater. (USSR) 2, 408 (1992).Google Scholar
Alekseeva, I., Dymshits, O., Tsenter, M., Zhilin, A., Golubkov, V., Denisov, I., Skoptsov, N., Malyarevich, A., Yumashev, K., J. Non Cryst. Solids 356, 3042 (2010).CrossRefGoogle Scholar
Dymshits, O.S., Zhilin, A.A., Chuvaeva, T.I., Shepilov, M.P., J. Non Cryst. Solids 127, 44 (1991).Google Scholar
Loiko, P.A., Dymshits, O.S., Zhilin, A.A., Alekseeva, I.P., Yumashev, K.V., J. Non Cryst. Solids 376, 99 (2013).CrossRefGoogle Scholar
Boiko, R.M., Okhrimchuk, A.G., Shestakov, A.V., in Advanced Solid State Lasers, OSA Trends in Optics and Photonics Series, vol. 19, Bosenberg, W.R., Fejer, M.M., Eds. (Optical Society of America, Washington, DC, 1998), p. 185.Google Scholar
Malyarevich, A.M., Denisov, I.A., Volk, Y.V., Yumashev, K.V., Dymshits, O.S., Zhilin, A.A., J. Alloys Compd. 341, 247 (2002).Google Scholar
Volk, Y.V., Malyarevich, A.M., Yumashev, K.V., Dymshits, O.S., Shashkin, A.V., Zhilin, A.A., J. Appl. Spectrosc. 74, 140 (2007).Google Scholar
Yu, C., Chen, L., Feng, S., He, D., Wang, M., Hu, L., J. Wuhan Univ. Technol. 27, 54 (2012).Google Scholar
Loiko, P.A., Dymshits, O.S., Vitkin, V.V., Skoptsov, N.A., Zhilin, A.A., Shemchuk, D.V., Tsenter, M.Y., Bogdanov, K.V., Malyarevich, A.M., Glazunov, I.V., Mateos, X., Yumashev, K.V., Appl. Opt. 55, 5505 (2016).Google Scholar
Dymshits, O., Zhilin, A., Alekseeva, I., Skoptsov, N., Malyarevich, A., Yumashev, K., J. Opt. Technol. 79, 415 (2012).CrossRefGoogle Scholar
Dymshits, O., Zhilin, A., Alekseeva, I., Skoptsov, N., Malyarevich, A., Yumashev, K., J. Opt. Technol. 79, 424 (2012).Google Scholar
Dymshits, O.S., Loiko, P.A., Skoptsov, N.A., Malyarevich, A.M., Yumashev, K.V., Zhilin, A.A., Alekseeva, I.P., Tsenter, M.Y., Bogdanov, K., J. Non Cryst. Solids 409, 54 (2015).Google Scholar
Dymshits, O.S., Alekseeva, I.P., Zhilin, A.A., Tsenter, M.Y., Loiko, P.A., Skoptsov, N.A., Malyarevich, A.M., Yumashev, K.V., Mateos, X., Baranov, A.V., J. Lumin. 160, 337 (2015).CrossRefGoogle Scholar
Loiko, P.A., Dymshits, O.S., Alekseeva, I.P., Zhilin, A.A., Tsenter, M.Y., Vilejshikova, E.V., Bogdanov, K.V., Mateos, X., Yumashev, K.V., J. Lumin. 179, 64 (2016).Google Scholar