Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T11:03:16.207Z Has data issue: false hasContentIssue false

Thermoelectronic energy conversion: Concepts and materials

Published online by Cambridge University Press:  10 July 2017

R. Wanke
Affiliation:
Department of Solid State Quantum Electronics, Max Planck Institute for Solid State Research, Germany; [email protected]
W. Voesch
Affiliation:
Department of Solid State Quantum Electronics, Max Planck Institute for Solid State Research, Germany; [email protected]
I. Rastegar
Affiliation:
Department of Solid State Quantum Electronics, Max Planck Institute for Solid State Research, Germany; [email protected]
A. Kyriazis
Affiliation:
Department of Solid State Quantum Electronics, Max Planck Institute for Solid State Research, Germany; [email protected]
W. Braun
Affiliation:
Department of Solid State Quantum Electronics, Max Planck Institute for Solid State Research, Germany; [email protected]
J. Mannhart
Affiliation:
Department of Solid State Quantum Electronics, Max Planck Institute for Solid State Research, Germany; [email protected]
Get access

Abstract

Thermoelectronic energy conversion can potentially provide an exceptionally efficient way to convert heat into electric power. Key components of such converters are materials with designed, small work functions. We present the principles of thermoelectronic energy conversion and discuss the advantages and challenges of the conversion process, as well the state of the art of the respective research.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hatsopoulos, G.N., Gyftopoulos, E.P., Thermionic Energy Conversion, Volume I: Processes and Devices (MIT Press, Cambridge, MA, 1973).Google Scholar
Moyzhes, B.Y., Geballe, T.H., J. Phys. D Appl. Phys. 38, 782 (2005).CrossRefGoogle Scholar
Meir, S., Stephanos, C., Geballe, T.H., Mannhart, J., J. Renew. Sustain. Energy 5, 043127 (2013).CrossRefGoogle Scholar
Wanke, R., Hassink, G.W.J., Stephanos, C., Rastegar, I., Braun, W., Mannhart, J., J. Appl. Phys. 119, 244507 (2016).CrossRefGoogle Scholar
Reisch, M., Halbleiter-Bauelemente (Springer, Berlin, 2007).Google Scholar
Vayenas, C.G., Bebelis, S., Ladas, S., Nature 343, 625 (1990).CrossRefGoogle Scholar
Becquerel, E., Ann. Chim. Phys. 39, 48 (1853).Google Scholar
Guthrie, F., Proc. R. Soc. Lond. 21, 168 (1873).Google Scholar
Edison, T.A., US Patent 307031 (1884).Google Scholar
Schlichter, W., Ann. Phys. 47, 573 (1915).CrossRefGoogle Scholar
Novikov, I., At. Energy 3, 409 (1957).CrossRefGoogle Scholar
Gryaznov, G., At. Energy 89, 510 (2000).CrossRefGoogle Scholar
Belbachir, R.Y., An, Z., Ono, T., J. Micromech. Microeng. 24, 085009 (2014).CrossRefGoogle Scholar
Lee, J.-H., Bargatin, I., Vancil, B.K., Gwinn, T.O., Maboudian, R., Melosh, N.A., Howe, R.T., J. Microelectromech. Syst. 23, 1182 (2014).CrossRefGoogle Scholar
Littau, K.A., Sahasrabuddhe, K., Barfield, D., Yuan, H., Shen, Z.-X., Howe, R.T., Melosh, N.A., Phys. Chem. Chem. Phys. 15, 14442 (2013).CrossRefGoogle Scholar
Lee, J.H., Bargatin, I., Melosh, N.A., Howe, R.T., Appl. Phys. Lett. 100, 173904 (2012).CrossRefGoogle Scholar
Hassink, G., Wanke, R., Rastegar, I., Braun, W., Stephanos, C., Herlinger, P., Smet, J.H., Mannhart, J., APL Mater. 3, 076106 (2015).CrossRefGoogle Scholar
Schwede, J.W., Bargatin, I., Riley, D.C., Hardin, B.E., Rosenthal, S.J., Sun, Y., Schmitt, F., Pianetta, P., Howe, R.T., Shen, Z., Melosh, N.A., Nat. Mater. 9, 762 (2010).CrossRefGoogle Scholar
Tyne, G.F.J., Saga of the Vacuum Tube, 2nd printing (Howard W. Sams, Indianapolis, 1987).Google Scholar
Blewett, J.P., J. Appl. Phys. 10, 831 (1939).CrossRefGoogle Scholar
Cronin, J.L., IEE Proc. I Solid-State Electron Devices 128, 19 (1981).CrossRefGoogle Scholar
Lafferty, J.M., J. Appl. Phys. 22, 299 (1951).CrossRefGoogle Scholar
Shiota, I., Miyamoto, M.Y., Eds., Functionally Graded Materials (Elsevier, Amsterdam, 1997).Google Scholar
Giordano, L., Cinquini, F., Pacchioni, G., Phys. Rev. B Condens. Matter 73, 045414 (2006).CrossRefGoogle Scholar
Vlahos, V., Lee, Y., Booske, J., Morgan, D., Turek, L., Kirshner, M., Kowalczyk, R., Wilsen, C., Appl. Phys. Lett. 94, 184102 (2009).CrossRefGoogle Scholar
Vaughn, J.M., Wan, C., Jamison, K.D., Kordesch, M.E., IBM J. Res. Dev. 55, 414 (2011).CrossRefGoogle Scholar
Wang, Y., Wang, J., Liu, W., Zhang, K., Li, J., IEEE Trans. Electron Devices 54, 1061 (2007).CrossRefGoogle Scholar
Toda, Y., Matsuishi, S., Hayashi, K., Ueda, K., Kamiya, T., Hirano, M., Hosono, H., Adv. Mater. 16, 685 (2004).CrossRefGoogle Scholar
Koeck, F.A.M., Nemanich, R.J., Diam. Relat. Mater. 15, 217 (2006).CrossRefGoogle Scholar
May, P., Stone, J., Ashfold, M., Hallam, K., Wang, W., Fox, N., Diam. Relat. Mater. 7, 671 (1998).CrossRefGoogle Scholar
Koeck, F.A.M., Nemanich, R.J., Lazea, A., Haenen, K., Diam. Relat. Mater. 18, 789 (2009).CrossRefGoogle Scholar
Koeck, F.A.M., Nemanich, R.J., Balasubramaniam, Y., Haenen, K., Sharp, J., Diam. Relat. Mater. 20, 1229 (2011).CrossRefGoogle Scholar
Khoshaman, A.H., Fan, H.D., Koch, A.T., Sawatzky, G.A., Nojeh, A., IEEE Nanotechnol. Mag. 8, 4 (2014).CrossRefGoogle Scholar
Zhao, Y., Ryu, S., Brus, L.E., Kim, K.S., Kim, P., Nano Lett. 9, 3430 (2009).Google Scholar
Chang, J.K., Lin, W.H., Taur, J.I., Chen, T.H., Liao, G.K., Pi, T.W., Chen, M.H., Wu, C.I., ACS Appl. Mater. Interfaces 7, 17155 (2015).CrossRefGoogle Scholar
Zhong, Z., Hansmann, P., Phys. Rev. B Condens. Matter 93, 235116 (2016).CrossRefGoogle Scholar
Ilic, O., Bermel, P., Chen, G., Joannopoulos, J.D., Celanovic, I., Soljačić, M., Nat. Nanotechnol. 11, 320 (2016).CrossRefGoogle Scholar