Article contents
Thermochemistry of New, Technologically Important Inorganic Materials
Published online by Cambridge University Press: 29 November 2013
Extract
The past decade has seen exciting advances in the discovery, improved synthesis and processing, and molecular level engineering of new inorganic materials having specialized electronic, ceramic, and structural applications. Many such materials share two common characteristics: They are complex in structure and composition (think for example of oxide superconductors), and they must be prepared by a series of steps under carefully controlled conditions (consider the intricacies of zeolite synthesis for example). The use of low-temperature aqueous synthesis conditions, with appropriate attention to pH, inorganic and organic structure-directing agents, and subsequent drying and calcination protocols has led to a wealth of new and often metastable crystalline polymorphs, to amorphous materials, and to fine powders with particles of nanoscale dimensions. Methods such as sol-gel synthesis, chimie douce (soft chemistry), hydrothermal synthesis, chemical vapor deposition, and various beam-deposition and epitaxy techniques produce a wealth of materials not constrained to be in chemical equilibrium with their surroundings and not representing the state of lowest free energy. Modern materials chemists almost have their pet Maxwell Demon to select atoms at will and cause them to assemble in a structure of controllable dimensions. The wealth of possible new structures formed begins to mimic the riches of organic chemistry. In this field, the fact that all complex organic and biochemical molecules are metastable under ambient conditions with respect to a mixture of carbon dioxide, water, and other simple gases is irrelevant except in a conflagration.
Liberation of ceramic science from the tyranny of high-temperature equilibrium is thus leading to new materials synthesized more quickly, at lower cost, and under environmentally more friendly conditions. There is of course a price to pay. First the synthetic procedures are more complex than traditional “mix, grind, fire, and repeat” ceramic processing. Second and more importantly, very little is known about the long-term stability of the materials formed, about their degradation during use, and about materials compatibility. Two examples of such problems are the potential corrosion of high Tc YBCO superconductors by ambient H2O and CO2, and the collapse to inactive phases of complex zeolitic and mesoporous catalysts under operating conditions. Chemical reactions in metastable materials are governed by an intertwined combination of thermodynamic driving forces and kinetic rates. For this rich landscape of new materials, neither the depths of the valleys nor the heights of the mountains are known. Often one cannot even tell which way is energetically downhill.
- Type
- Technical Features
- Information
- Copyright
- Copyright © Materials Research Society 1997
References
- 10
- Cited by