Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-30T22:56:25.460Z Has data issue: false hasContentIssue false

Thermal Spray: Current Status and Future Trends

Published online by Cambridge University Press:  31 January 2011

Get access

Extract

Thermal spray is a continuous, directed, melt-spray process in which particles (e.g., 1–50 μm in diameter) of virtually any material are melted and accelerated to high velocities, through either a combustion flame or a dc or rf nontransferred thermal-plasma arc. The molten or semimolten droplets impinge on a substrate and rapidly solidify to form a thin “splat.” The deposit is built up by successive impingement and interbonding among the splats. The splats accumulate into a wellbonded deposit, generally > 10 μm thick.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Thermal Spraying: Practice, Theory, and Application (American Welding Society, Miami, FL, 1985).Google Scholar
2.Thermal Spray Technology, New Ideas and Processes: Proc. of the National Thermal Spray Conf. (ASM International, Materials Park, OH, 19891998).Google Scholar
3.Thorpe, M.L., Adv. Mater. Proc. 143 (5) (1993) p. 50.Google Scholar
4.Pawlowski, L., The Science and Engineering of Thermal Spray Coatings (Wiley, Chichester, UK, 1995).Google Scholar
5.Herman, H. and Sampath, S., in Metallurgical and Protective Coatings, edited by Stern, K. (Chapman & Hall, New York, 1996) p. 261.CrossRefGoogle Scholar
6.Herman, H., Sci. Am. 256 (September 1988) p. 112.CrossRefGoogle Scholar
7.Sampath, S. and Herman, H., J. Met. 45 (7) (1993) p. 42.Google Scholar
8.Kreye, H., in Proc. 2nd Plasma-Technik Symp., Vol. 1, edited by Huber, P. (Plasma-Technik, Wohlen, Switzerland, 1991) p. 39.Google Scholar
9.Browning, J.A., J. Thermal Spray Technol. 1 (4) (1992) p. 289.CrossRefGoogle Scholar
10.Chraska, P. and Hrabovsky, M., in Proc. 13th Int. Thermal Spray Conf., edited by Berndt, C.C. (ASM International, Materials Park, OH, 1992) p. 81.Google Scholar
11.Boulos, M., Pure Appl. Chem. 57 (9) (1985) p. 1321.CrossRefGoogle Scholar
12.Clyne, T.W. and Gill, S.C., J. Thermal Spray Technol. 5 (1996) p. 401.CrossRefGoogle Scholar
13.Kesler, O., Finot, M., Suresh, S., and Sampath, S., Acta Mater. 45 (8) (1997) p. 3123.CrossRefGoogle Scholar
14.Matejicek, J., Sampath, S., Brand, P.C., and Prask, H.J., Acta Mater. 47 (7) (1999) p. 607.CrossRefGoogle Scholar
15.Rocheville, C.F., U.S. Patent No. 3,100,724 (August 13, 1963).Google Scholar
16.Alkhimov, A.P., Kosarev, V.F., and Papyrin, A.N., Sov. Phys. Dokl. 35 (12) (1990) p. 1047; A.P. Alkhimov, A.N. Papyrin, V.F. Kosarev, N.I. Nesterovich, and M.M. Shushpanov, U.S. Patent No. 5,302,414 (April 12, 1994).Google Scholar
17.Smith, M.F., Brockmann, J.E., Dykhuizen, R.C., Gilmore, D.L., Neiser, R.A., and Roemer, T.J., in Solid Freeform and Additive Fabrication, edited by Dimos, D., Danforth, S.C., and Cima, M.J. (Mater. Res. Soc. Symp. Proc. 542, Warrendale, PA, 1998) p. 65.Google Scholar
18.Van Steenkiste, T.H., Smith, J.R., Teets, R.E., Moleski, J.J., Gorkiewicz, D.W., Tison, R.P., Marantz, D.R., Kowalsky, K.A., Riggs, W.L., II, Zajchowski, P.H., Pilsner, B., McCune, R.C., and Barnett, K.J., Surf. Coat. Technol. 111 (1999) p. 62.CrossRefGoogle Scholar
19.McCune, R.C., Donlon, W.T., Cartwright, E.L., Papyrin, A.N., Rybicki, E.F., and Shadley, J.R., in Proc. 9th Natl. Thermal Spray Conf., edited by Berndt, C.C. (ASM International, Materials Park, OH, 1996) p. 397.Google Scholar
20.Dykhuizen, R.C., Smith, M.F., Gilmore, D.L., Neiser, R.A., Jiang, X.Y., and Sampath, S., J. Thermal Spray Technol. 8 (4) (1999) p. 559.CrossRefGoogle Scholar
21.Matejicek, J. and Sampath, S., “Processing Effects on Residual Stresses in Single Particles,” presented at Symposium K, Materials Research Society Meeting, Boston, November 29, 1999.Google Scholar
22.McCune, R.C., Donlon, W.T., Popoola, O.O., and Cartwright, E.L., J. Thermal Spray Technol. 9 (1) (2000) p. 73.CrossRefGoogle Scholar
23.Montavon, G., Robert, B., Verdy, C., Monin, V., Atcholi, K.E., and Coddet, C., in Thermal Spray: Practical Solutions for Engineering Problems, edited by Berndt, C.C. (ASM International, Materials Park, OH, 1996) p. 827.Google Scholar
24.Houck, D.L., Mod. Dev. Powder Metall. 12 (1980) p. 485.Google Scholar
25.Sampath, S. and Herman, H., J. Thermal Spray Technol. 5 (4) (1996) p. 445.CrossRefGoogle Scholar
26.Sampath, S., Jiang, X., Wang, G.X., and Vardelle, A., in Proc. 9th Symp. on Surface Engineering, Vol. 20 (CIMTEC, Florence, Italy, 1998) p. 259.Google Scholar
27.Dent, A., Patel, A., Sampath, S., and Herman, H., in Proc. Int. Thermal Spray Conf., edited by Berndt, C.C. (ASM International, Materials Park, OH, 2000) p. 495.Google Scholar
28.Ilavsky, J., Allen, A.J., Long, G.G., and Krueger, S., J. Am. Ceram. Soc. 80 (3) (1997) p. 733.CrossRefGoogle Scholar
29.Boukari, H., Herman, H., Berndt, C., Wallace, J., Ilavsky, J., Long, G., and Allen, A., “The Role of Feedstock Particle Size on the Microstructural Behavior of Plasma Sprayed YSZ Deposits During Annealing,” submitted to Proc. Int. Thermal Spray. Conf.Google Scholar
30.Kulkarni, A., Sampath, S., Goland, A., Herman, H., and Dowd, B., “Computed Microtomography Studies to Characterize Microstructure-Property Correlations in Thermal Sprayed Alumina Coatings,” Scripta Mater. (2000).CrossRefGoogle Scholar
31.Miyamoto, T. and Sugimoto, S., in Proc. Intl. Thermal Spray Conf., edited by Ohmori, A. (High Temperature Society of Japan, Osaka, 1995) p. 3.Google Scholar
32.Nicoll, A.R., in Proc. 7th Natl. Thermal Spray Conf., edited by Berndt, C.C. and Sampath, S. (ASM International, Materials Park, OH, 1994) p. 7.Google Scholar
33.Popoola, O.O., Zaluzec, M.J., and McCune, R.C., Surf. Eng. 14 (2) (1998) p. 107.CrossRefGoogle Scholar
34.McCune, R.C., Welding J. 74 (8) (1995) p. 41.Google Scholar
35.Kuse, H., Ohtsu, M., Ito, H., and Takezaki, S., in SAE Tech. Paper Ser. No. 770624 (Society of Automotive Engineers, Warrendale, PA, 1977).Google Scholar
36.Peterman, T., in Proc. 13th Int. Thermal Spray Conf., edited by Berndt, C.C. (ASM International, Materials Park, OH, 1992) p. 309.Google Scholar
37.White, D.R., Wilkosz, D.E., and Szuba, J.A., U.S. Patent No. 5,658,506 (August 19, 1997).Google Scholar
38.Goswami, R., Parise, J.B., Sampath, S., and Herman, H., J. Mater. Res. 14 (1999) p. 3489.CrossRefGoogle Scholar
39.Goswami, R., Herman, H., Sampath, S., and Parise, J.B., J. Mater. Res. 15 (2000) p. 1.CrossRefGoogle Scholar
40.Bouyer, E., Gitzhofer, F., and Boulos, M.I., J. Met. 49 (February 1997) p. 58.Google Scholar
41.Kong, P., Huang, T.T., Pfender, E., IEEE Trans. Plasma Science, PS14 (1986) p. 357.CrossRefGoogle Scholar
42.Rao, N., Girshik, S., Heberlein, J., McMurry, P., Jones, S., Hansen, D., Micheel, B., Plasma Chem. Plasma Proc. 15 (4) (1996) p. 581.CrossRefGoogle Scholar
43.Karthikeyen, J., Tikkanen, J., Wang, J.Y., King, A.H., Herman, H., and Berndt, C.C., Nanostruct. Mater., 9 (1997) p. 137.CrossRefGoogle Scholar
44.Harris, D., Janowiecki, R., Semler, C., Willson, M., and Cheng, J., J. Appl. Phys. 41 (3) (1970) p. 1348.CrossRefGoogle Scholar
45.Varshney, U., Eichelberger, B., Neal, J., Churchill, R., Ngo, K., and Thibodeaux, R., J. Physique Colloque 7 (C-1) (1997) p. 147.Google Scholar
46.Smyth, R.T. and Anderson, J.C., Electrocomp. Sci. Technol. 2 (1975) p. 135.CrossRefGoogle Scholar
47.Braguier, M., Bejat, J., Tueta, R., Verna, M., Aubin, G., and Naturel, C., in Proc. Conf. on Hybrid Microelectronics (I.E.R.E., London, 1973) p. 15.Google Scholar
48.Fasching, M., Prinz, F., and Weiss, L., J. Thermal Spray Technol. (1995) 4 (2) p. 133.CrossRefGoogle Scholar