Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-24T08:48:24.381Z Has data issue: false hasContentIssue false

TEM Sample Preparation and FIB-Induced Damage

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

One of the most important applications of a focused ion beam (FIB) workstation is preparing samples for transmission electron microscope (TEM) investigation. Samples must be uniformly thin to enable the analyzing beam of electrons to penetrate. The FIB enables not only the preparation of large, uniformly thick, sitespecific samples, but also the fabrication of lamellae used for TEM samples from composite samples consisting of inorganic and organic materials with very different properties. This article gives an overview of the variety of techniques that have been developed to prepare the final TEM specimen. The strengths of these methods as well as the problems, such as FIB-induced damage and Ga contamination, are illustrated with examples. Most recently, FIB-thinned lamellae were used to improve the spatial resolution of electron backscatter diffraction and energy-dispersive x-ray mapping. Examples are presented to illustrate the capabilities, difficulties, and future potential of FIB.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Giannuzzi, L.A, Stevie, F.A., Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques, and Practice (Springer, New York, 2005).CrossRefGoogle Scholar
2.Kirk, E.C. et al., Inst. Phys. Conf. Series 100, 501 (1989).Google Scholar
3.Basile, D. et al., Mater. Res. Soc. Symp. Proc. 254 (Materials Research Society, Pittsburgh, PA, 1992) pp. 2341.Google Scholar
4.Overwijk, M.H.F., van den Heuvel, F.C., Bull-Lieuwma, C.W.T., J. Vac. Sci. Technol., B 11, 2021 (1993).CrossRefGoogle Scholar
5.Giannuzzi, L.A. et al., Mater. Res. Soc. Symp. Proc. 480 (Materials Research Society, Warrendale, PA, 1997) pp. 1927.Google Scholar
6.Yaguchi, T., Kamino, T., Ishitani, T., Urao, R., Microsc. Microanal. 5, 363 (1999).CrossRefGoogle Scholar
7.Giannuzzi, L.A., Geurts, R., Ringnalda, J., Microsc. Microanal. 11 suppl. 2, 828 (2005).Google Scholar
8.Giannuzzi, L.A., Stevie, F.A., Micron 30, 197 (1999).CrossRefGoogle Scholar
9.Stevie, F.A. et al., Surf. Interface Anal. 23, 61 (1995).CrossRefGoogle Scholar
10.Anderson, R.M., Mater. Res. Soc. Symp. Proc. 254 (Materials Research Society, Pittsburgh, PA, 1992) pp. 141148.Google Scholar
11.Anderson, R.M., Klepeis, S.J., Mater. Res. Soc. Symp. Proc. 480 (1997) p. 187.CrossRefGoogle Scholar
12.Langford, R.M., Ozkaya, D., Huey, B., Petford-Long, A.K., Proc. Royal Microsc. Soc.: Microscopy of Semiconducting Materials XII (2001) pp. 511514.Google Scholar
13.Young, R.J., Carleson, P.D., Hunt, T., Walker, J.F., Proc. 24th ISTFA Conf. (1998) p. 329.Google Scholar
14.Young, R.J., Microsc. Microanal. Proc. (2000, vol. 6, suppl. 2) p. 512.CrossRefGoogle Scholar
15.Moore, M.V., Microsc. Microanal. Proc. (2002, vol. 8, suppl. 2) p. 60.CrossRefGoogle Scholar
16.Langford, R.M. et al., J. Vac. Sci. Technol. B 19 (3), 755 (May/June 2001).CrossRefGoogle Scholar
17.Kamino, T. et al., J. Electron Microsc. 53 (6), 583 (2004).CrossRefGoogle Scholar
18.Kamino, T. et al., J. Electron Microsc. 53 (5), 563 (2004).CrossRefGoogle Scholar
19.Ohnishi, T. et al., Proc. 25th Int. Symp. Testing and Failure Analysis (November 1999) pp. 449501.Google Scholar
20.Giannuzzi, L.A. et al., in Analysis Techniques of Submicron Defects, 2002 Supplement to the EDFAS Failure Analysis Desktop Reference (ASM International, Materials Park, Ohio, 2002) pp. 2935.Google Scholar
21.Schwarz, S.M., Kempshall, B.W., Giannuzzi, L.A., Acta Mater. 51, 2765 (2003).CrossRefGoogle Scholar
22.Kamino, T. et al., J. Electron Microsc. 53 (5), 459 (2004).CrossRefGoogle Scholar
23.McCaffrey, J.P., Phaneuf, M.W., Madsen, L.D., Ultramicroscopy 87, 97 (2001).CrossRefGoogle Scholar
24.Wanga, Z. et al., Appl. Surf. Sci. 241, 80 (2005).CrossRefGoogle Scholar
25.Thompson, K. et al., Microsc. Microanal. 12 suppl. 2, 1736CD (2006).CrossRefGoogle Scholar
26.Huang, Z., J. Microsc. 215, 219 (2004).CrossRefGoogle Scholar
27.Kato, N.I., J. Electron Microsc. 53, 451 (2004).CrossRefGoogle Scholar
28.Casey, J.D. et al., J. Vac. Sci. Technol. B 20, 2682 (2002).CrossRefGoogle Scholar
29.Michael, J.R., Microsc. Microanal. 12 suppl. 2, 1248CD (2006).CrossRefGoogle Scholar
30.Spolenak, R., Sauter, L., Eberl, C., Scripta Mater. 53, 1292 (2005).CrossRefGoogle Scholar
31.Olliges, S. et al., Acta Mater. 54, 5393 (2006).CrossRefGoogle Scholar
32.J.H., Westbrook, Ed. Moffatt's Handbook of Binary Phase Diagrams (Genium Group, Amsterdam, NY, 2004) p. 2/94.Google Scholar
33.Stevie, F.A. et al., Surf. Interface Anal. 31, 345 (2001).CrossRefGoogle Scholar
34.Henschel, W. et al., J. Vac. Sci. Technol., B 21, 2975 (2003).CrossRefGoogle Scholar
35.Mayer, J., Weirich, T.E., Microsc. Microanal. 11 suppl. 2, 46 (2005).CrossRefGoogle Scholar
36.Lomness, J.K., Giannuzzi, L.A., Hampton, M.D., Microsc. Microanal. 7, 418 (2001).CrossRefGoogle Scholar
37.Perrey, C.R. et al., J. Microsc. 214, 222 (2004).CrossRefGoogle Scholar
38.Marko, M. et al., J. Microsc. 222, 42 (2006).CrossRefGoogle Scholar
39.Sivel, V.G.M. et al., J. Microsc. 218, 115 (2005).CrossRefGoogle Scholar
40.Miller, M.K., Russell, K.F., Thompson, G.B., Ultramicroscopy 102, 287 (2005).CrossRefGoogle Scholar
41.Larson, D.J. et al., Ultramicroscopy 75, 147 (1998).CrossRefGoogle Scholar
42.Larson, D.J. et al., Ultramicroscopy 79, 287 (1999).CrossRefGoogle Scholar
43.Larson, D.J., Petford-Long, A.K., Ma, Y.Q., Cerezo, A., Acta Mater. 52, 2847 (2004).CrossRefGoogle Scholar
44.Pérez-Willard, F. et al., Condens. Matter, 0601543 (2006).Google Scholar