Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T19:24:33.008Z Has data issue: false hasContentIssue false

Surface segregation and poisoning in materials for low-temperature SOFCs

Published online by Cambridge University Press:  10 September 2014

John Druce
Affiliation:
International Institute for Carbon Neutral Energy Research, Kyushu University, Japan; [email protected]
Helena Téllez
Affiliation:
International Institute for Carbon Neutral Energy Research, Kyushu University, Japan; [email protected]
Junji Hyodo
Affiliation:
Department of Applied Chemistry, Kyushu University, Japan; [email protected]
Get access

Abstract

Surfaces and interfaces determine the performance and long-term durability of solid-oxide fuel cells (SOFCs). In most cases, the surface chemical composition of the materials used in these electrochemical energy conversion devices shows significant deviations from the bulk chemistry. This might be as a result of surface cation segregation processes, as well as long-term surface poisoning due to external impurities. Both processes have implications for the electrochemical performance of the devices, leading to the degradation of the cell components. In order to suppress this degradation, an effort to lower the operation temperature to 500–800°C has been made. This article provides an overview of present research progress related to surface segregation and poisoning for low-temperature SOFCs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Shkerin, S.N., Kuznetsov, V., Kalashnikova, N.A., Russ. J. Electrochem. 39, 591 (2003).Google Scholar
Aoki, M., Chiang, Y.-M., Kosacki, I., Lee, L.J.-R., Tuller, H.L., Liu, Y., J. Am. Ceram. Soc. 79, 1169 (1996).Google Scholar
Hughes, A.E., Badwal, S.P.S., Solid State Ionics 46, 265 (1991).Google Scholar
de Ridder, M., Vervoort, A.G.J., van Welzenis, R.G., Brongersma, H.H., Solid State Ionics 156, 255 (2003).Google Scholar
Scanlon, P.J., Bink, R.A.M., van Berkel, F.P.F., Christie, G.M., van Ijzendoorn, L.J., Brongersma, H.H., van Welzenis, R.G., Solid State Ionics 112, 123 (1998).CrossRefGoogle Scholar
Hansen, K.V., Norrman, K., Mogensen, M., Surf. Interface Anal. 38, 911 (2006).Google Scholar
Oishi, Y., Sakka, Y., Ando, K., J. Nucl. Mater. 96, 23 (1981).CrossRefGoogle Scholar
Litzelman, S., Souza, R., Butz, B., Tuller, H., Martin, M., Gerthsen, D., J. Electroceram. 22, 405 (2009).Google Scholar
Druce, J., Simrick, N., Ishihara, T., Kilner, J., Nucl. Instrum. Methods Phys. Res. B 332 (2014).CrossRefGoogle Scholar
Wu, Y., Vels Hansen, K., Norrman, K., Jacobsen, T., Mogensen, M.B., ECS Trans. 57, 1673 (2013).CrossRefGoogle Scholar
Ivanova, D., Andrei, V.K., Vladislav, V.K., Marques, F.M.B., Bol. Soc. Esp. Ceram. Vidrio 47, 201 (2008).CrossRefGoogle Scholar
Zhang, T., Solid State Ionics 168, 187 (2004).Google Scholar
Druce, J., Kilner, J., J. Electrochem. Soc. 161, F99 (2014).Google Scholar
de Ridder, M., van Welzenis, R., Brongersma, H., Kreissig, U., Solid State Ionics 158, 67 (2003).CrossRefGoogle Scholar
Guo, M., Lu, J., Wu, Y., Wang, Y., Luo, M., Langmuir 27, 3872 (2011).Google Scholar
Wilkes, M.F., Hayden, P., Bhattacharya, A.K., Appl. Surf. Sci. 206, 12 (2003).Google Scholar
Lee, H.B., Prinz, F.B., Cai, W., Acta Mater. 58, 2197 (2010).Google Scholar
Ismali, A., Giorgi, J.B., Woo, T.K., J. Phys. Chem. C 116, 704 (2012).CrossRefGoogle Scholar
Kuklja, M.M., Kotomin, E.A., Merkle, R., Mastrikov, Y.A., Maier, J., Phys. Chem. Chem. Phys. 15, 5443 (2013).CrossRefGoogle Scholar
Teraoka, Y., Yamazoe, N., Seiyama, T., J. Surf. Sci. Soc. Japan 9, 153 (1988).Google Scholar
Viitanen, M.M., Welzenis, R.G.V., Brongersma, H.H., van Berkel, F.P.F., Solid State Ionics 150, 223 (2002).Google Scholar
Bucher, E., Sitte, W., Klauser, F., Bertel, E., Solid State Ionics 191, 61 (2011).Google Scholar
Druce, J., Ishihara, T., Kilner, J., Solid State Ionics 262, 893 (2014).Google Scholar
Vovk, G., Chen, X., Mims, C.A., J. Phys. Chem. B 109, 2445 (2004).Google Scholar
Kubicek, M., Limbeck, A., Froemling, T., Hutter, H., Fleig, J., J. Electrochem. Soc. 158, B727 (2011).Google Scholar
Fullarton, I.C., Jacobs, J.-P., van Benthem, H.E., Kilner, J.A., Brongersma, H.H., Scanlon, P.J., Steele, B.C.H., Ionics 1, 51 (1995).Google Scholar
Dulli, H., Dowben, P.A., Liou, S.H., Plummer, E.W., Phys. Rev. B: Condens. Matter 62, R14629 (2000).Google Scholar
Ponce, S., Peña, M.A., Fierro, J.L.G., Appl. Catal. B 24, 193 (2000).Google Scholar
Bertacco, R., Contour, J.P., Barthélemy, A., Olivier, J., Surf. Sci. 511, 366 (2002).CrossRefGoogle Scholar
Borca, C.N., Xu, B., Komesu, T., Jeong, H.K., Liu, M.T., Liou, S.H., Dowben, P.A., Surf. Sci. 512, L346 (2002).Google Scholar
Kilner, J.A., Tellez-Lozano, H., Burriel, M., Cook, S., Druce, J., ECS Trans. 57, 1701 (2013).CrossRefGoogle Scholar
Téllez, H., Druce, J., Ju, Y.-W., Kilner, J., Ishihara, T., Int. J. Hydrogen Energy (2014), doi: 10.1016/j.ijhydene.2014.06.102.Google Scholar
Sase, M., Hermes, F., Yashiro, K., Sato, K., Mizusaki, J., Kawada, T., Sakai, N., Yokokawa, H., J. Electrochem. Soc. 155, B793 (2008).Google Scholar
Sase, M., Yashiro, K., Sato, K., Mizusaki, J., Kawada, T., Sakai, N., Yamaji, K., Horita, T., Yokokawa, H., Solid State Ionics 178, 1843 (2008).Google Scholar
Gadre, M.J., Lee, Y.-L., Morgan, D., Phys. Chem. Chem. Phys. 14, 2606 (2012).Google Scholar
Feng, Z., Yacoby, Y., Gadre, M.J., Lee, Y.-L., Hong, W.T., Zhou, H., Biegalski, M.D., Christen, H.M., Adler, S.B., Morgan, D., Shao-Horn, Y., J. Phys. Chem. Lett. 5, 1027 (2014).Google Scholar
Crumlin, E.J., Ahn, S.J., Lee, D., Mutoro, E., Biegalski, M.D., Christen, H.M., Shao-Horn, Y., J. Electrochem. Soc. 159, F219 (2012).Google Scholar
Ding, H., Virkar, A.V., Liu, M., Liu, F., Phys. Chem. Chem. Phys. 15, 489 (2013).Google Scholar
Lee, W., Han, J.W., Chen, Y., Cai, Z., Yildiz, B., J. Am. Chem. Soc. 135, 7909 (2013).Google Scholar
Tasker, P.W., J. Phys. C: Solid State Phys. 12, 4977 (1979).Google Scholar
Harrison, W.A., Phys. Rev. B: Condens. Matter 83, 155437 (2011).Google Scholar
Crumlin, E.J., Mutoro, E., Liu, Z., Grass, M.E., Biegalski, M.D., Lee, Y.-L., Morgan, D., Christen, H.M., Bluhm, H., Shao-Horn, Y., Energy Environ. Sci. 5, 6081 (2012).CrossRefGoogle Scholar
Min, K., Sun, C.W., Qu, W., Zhang, X.G., Yick, S., Robertson, M., Deces-Petit, C., Hui, R., Int. J. Green Energy 6, 627 (2009).Google Scholar
Lee, S.-N., Atkinson, A., Kilner, J.A., J. Electrochem. Soc. 160, F629 (2013).Google Scholar
Chen, X.B., Zhen, Y.D., Li, J., Jiang, S.P., Int. J. Hydrogen Energy 35, 2477 (2010).CrossRefGoogle Scholar
Bucher, E., Yang, M., Sitte, W., J. Electrochem. Soc. 159, B592 (2012).Google Scholar
Jiang, S.P., Chen, X.B., Int. J. Hydrogen Energy 39, 505 (2014).CrossRefGoogle Scholar
Sasaki, K., Haga, K., Yoshizumi, T., Minematsu, D., Yuki, E., Liu, R., Uryu, C., Oshima, T., Ogura, T., Shiratori, Y., Ito, K., Koyama, M., Yokomoto, K., J. Power Sources 196, 9130 (2011).CrossRefGoogle Scholar
Liu, R.R., Kim, S.H., Shiratori, Y., Oshima, T., Ito, K., Sasaki, K., ECS Trans. 25, 2859 (2009).Google Scholar
Xiong, Y., Yamaji, K., Horita, T., Yokokawa, H., Akikusa, J., Eto, H., Inagaki, T., J. Electrochem. Soc. 156, B588 (2009).Google Scholar
Yan, A., Cheng, M., Dong, Y.L., Yang, W.S., Maragou, V., Song, S.Q., Tsiakaras, P., Appl. Catal. B 66, 64 (2006).Google Scholar
Chen, K.F., Hyodo, J., Zhao, L., Ai, N., Ishihara, T., Jiang, S.P., J. Electrochem. Soc. 160, F1033 (2013).Google Scholar
Bucher, E., Gspan, C., Hofer, F., Sitte, W., Solid State Ionics 238, 15 (2013).Google Scholar
Bucher, E., Gspan, C., Hofer, F., Sitte, W., Solid State Ionics 230, 7 (2013).Google Scholar
Lee, S.-N., Atkinson, A., Kilner, J.A., ECS Trans. 57, 605 (2013).Google Scholar
Atkinson, A., Barnett, S.A., Gorte, R.J., Irvine, J.T.S., McEvoy, A., Mogensen, M.B., Singhal, S.C., Vohs, J., Nat. Mater. 3, 17 (2004).Google Scholar
Jiang, S., Chan, S., J. Mater. Sci. 39, 4405 (2004).CrossRefGoogle Scholar
Ju, Y.-W., Eto, H., Inagaki, T., Ida, S., Ishihara, T., J. Power Sources 195, 6294 (2010).CrossRefGoogle Scholar
Nikolla, E., Schwank, J., Linic, S., J. Electrochem. Soc. 156, B1312 (2009).CrossRefGoogle Scholar
Norrman, K., Vels Hansen, K., Mogensen, M.B., J. Eur. Ceram. Soc. 26, 967 (2006).Google Scholar
Vels Jensen, K., Wallenberg, R., Chorkendorff, I., Mogensen, M.B., Solid State Ionics 160, 27 (2003).Google Scholar
Hauch, A., Jensen, S.H., Bilde-Sorensen, J.B.B., Mogensen, M.B., J. Electrochem. Soc. 154, A619 (2007).Google Scholar
Vels Hansen, K., Norrman, K., Mogensen, M.B., J. Electrochem. Soc. 151, A1436 (2004).Google Scholar
Liu, Y., Jiao, C., Solid State Ionics 176, 435 (2005).CrossRefGoogle Scholar
Haga, K., Adachi, S., Shiratori, Y., Itoh, K., Sasaki, K., Solid State Ionics 179, 1427 (2008).Google Scholar
Matsuzaki, Y., Yasuda, I., Solid State Ionics 132, 261 (2000).Google Scholar
Cheng, Z., Zha, S., Liu, M., J. Power Sources 172, 688 (2007).Google Scholar
Hagen, A., Rasmussen, J.F.B., Thyden, K., J. Power Sources 196, 7271 (2011).Google Scholar
Lussier, A., Sofie, S., Dvorak, J., Idzerda, Y.U., Int. J. Hydrogen Energy 33, 3945 (2008).Google Scholar
Sasaki, K., Teraoka, Y., J. Electrochem. Soc. 150, A878 (2003).Google Scholar
Sasaki, K., Teraoka, Y., J. Electrochem. Soc. 150, A885 (2003).Google Scholar
McIntosh, S., Gorte, R.J., Chem. Rev. 104, 4845 (2004).Google Scholar
Lin, Y.B., Zhan, Z.L., Liu, J., Barnett, S.A., Solid State Ionics 176, 1827 (2005).Google Scholar
Kim, H., Lu, C., Worrell, W.L., Vohs, J.M., Gorte, R.J., J. Electrochem. Soc. 149, A247 (2002).Google Scholar
Kan, H., Lee, H., Appl. Catal. B 97, 108 (2010).CrossRefGoogle Scholar
Sasaki, K., J. Fuel Cell Sci. Technol. 5 (3), 031212 (2008).Google Scholar
Dong, J., Cheng, Z., Zha, S.W., Liu, M.L., J. Power Sources 156, 461 (2006).Google Scholar