Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T14:05:46.907Z Has data issue: false hasContentIssue false

Surface Magnetism and Kerr Spectroscopy

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Magneto-optic effects were first discovered in 1845 by Michael Faraday, but these effects continue to make a major impact on the materials community to this day. The need for new magnetic information-storage media has stimulated new approaches and opened new scientific opportunities in the exploration of thin-film and surface magnetism. This article provides background to some of these developments and highlights examples of contemporary issues that provide a focus for the field. In the Faraday effect, the polarization plane of linearly polarized light rotates when a magnetic field is applied in the propagation direction. The analogous phenomenon was subsequently discovered by the Rev. John Kerr in 1877 for light reflected from opaque materials. The works of Faraday and Kerr serve as cornerstones for our present understanding of magneto-optic effects in magnetic materials. Magnetooptics is presently described in the context of either microscopic quantum theory or macroscopic dielectric theory. Microscopically, the coupling between the electric field of the propagating light and the electron spin in a magnetic medium occurs through the spin-orbit interaction. Macroscopically, magneto-optic effects arise from the antisymmetric, off-diagonal elements in the dielectric tensor, as discussed in the next section.

Magneto-optic characterizations of surface magnetism began only a decade ago. The first surface magneto-optic Kerr-effect study, better known by its acronym SMOKE, concerned the magnetichysteresis loops for ultrathin Fe films grown epitaxially on Au(100). Since then, SMOKE has emerged as a premier surface-magnetism technique. SMOKE has been applied to various topics in low-dimensional magnetism, ranging from the detection of magnetic order to the characterization of critical behavior, magnetic surface anisotropies, and the oscillatory antiferromagnetic coupling exhibited by giant-magnetoresistance

heterostructures. Additional interest in SMOKE has been generated by the recent commercialization of high-density, magneto-optic information-storage media, and especially by the next-generation candidate material based on Co/Pt superlattices.

Type
Magnetism on a Microscopic Scale
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Faraday, M., Trans. R. Soc. London (London) 5 (1846) p. 592.Google Scholar
2.Kerr, J., Philos. Mag. 3 (1877) p. 339; Kerr, J., Philos. Mag. 5 (1878) p. 161.CrossRefGoogle Scholar
3.Daalderop, G.H.O., Mueller, F.M., Albers, R.C., and Boring, A.M., J. Magn. Mater. 74 (1988) p. 211.CrossRefGoogle Scholar
4.Landau, L.D. and Lifshitz, E.M., Electrodynamics of Continuous Media (Pergamon Press, London, 1960).Google Scholar
5.Moog, E.R. and Bader, S.D., Superlattices Microstructure 1 (1985) p. 543; Bader, S.D., Moog, E.R., and Grünberg, P., J. Magn. Mater. 53 (1986) p. L295.CrossRefGoogle Scholar
6.Klahn, S., Hansen, P., and Greidanus, F.J.A.M., Vacuum 41 (1990) p. 1160.CrossRefGoogle Scholar
7.Nakamura, K., Tsunashima, S., Iwata, S., and Uchiyama, S., IEEE Trans. Magn. 25 (1989) p. 3758; Hashimoto, S., Matouda, H., and Ochiai, Y., Appl. Phys. Lett. 56 (1990) p. 1069; Hashimoto, S., Ochiai, Y., and Aso, K., J. Appl. Phys. 67 (1990) p. 2136.CrossRefGoogle Scholar
8.Voigt, W., Magneto-und Elektrooptic (B.G. Teuner, Leipzig, 1908) and Handbook der Elektrizität und des Magnetismus, vol. IV:2 (Barth, J.A., Leipzig, 1915) p. 393.Google Scholar
9.Krinchik, G.S. and Artem'ev, V.A., Soviet Phys. JETP 26 (1968) p. 1080.Google Scholar
10.Zak, J., Moog, E.R., Liu, C., and Bader, S.D., J. Magn. Mater. 89 (1990) p. 107.CrossRefGoogle Scholar
11.Zak, J., Moog, E.R., Liu, C., and Bader, S.D., Phys. Rev. B 43 (1991) p. 6423.CrossRefGoogle Scholar
12.Qiu, Z.Q., Pearson, J., and Bader, S.D., Phys. Rev. 46 (1992) p. 8195.CrossRefGoogle Scholar
13.Mermin, M.D. and Wagner, H., Phys. Rev. Lett. 17 (1966) p. 1133.CrossRefGoogle Scholar
14.Bander, M. and Mills, D.L., Phys. Rev. B 38 (1988) p. 21,015.CrossRefGoogle Scholar
15.Qiu, Z.Q., Pearson, J., and Bader, S.D., Phys. Rev. Lett. 67 (1991) p. 1,646; Phys. Rev. B 49 (1994) p. 8797.CrossRefGoogle Scholar
16.Grünberg, P., Schreiber, R., Pang, Y., Brodsky, M.B., and Sowers, H., Phys. Rev. Lett. 57 (1986) p. 2442.CrossRefGoogle Scholar
17.Baibich, M.N., Broto, J.M., Fert, A., Van Dau, F. Nguyen, Petroff, F., Etienne, P., Greuzet, G., Friederich, A., and Chazelas, J., Phys. Rev. Lett. 61 (1988) p. 2472.CrossRefGoogle Scholar
18.Unguris, J., Celotta, R.J., and Pierce, D.T., Phys. Rev. Lett. 67 (1991) p. 140; Purcell, S.T., Folkerts, W., Johnson, M.T., McGee, N.W.E., Jager, J., de Stegge, J. aan, Zeper, W.B., Hoving, W., and Grünberg, P., Phys. Rev. Lett. p. 903; Qiu, Z.Q., Pearson, J., Berger, A., and Bader, S.D., Phys. Rev. Lett. 68 (1992) p. 1398.CrossRefGoogle Scholar
19.Koelling, D.D., Phys. Rev. B 50 (1994) p. 273.CrossRefGoogle Scholar
20.Pappas, D.P., Kämper, K-P., and Hopster, H., Phys. Rev. Lett. 64 (1990) p. 3179; Allenspach, R. and Bischof, A. , Phys. Rev. Lett. 69 (1992) p. 3385; Qiu, Z.Q., Pearson, J., Bader, S.D., Phys. Rev. Lett. 70 (1993) p. 1006.CrossRefGoogle Scholar
21.Kashuba, A. and Pokrovsky, V.L., Phys. Rev. Lett. 70 (1993) p. 3155; Kashuba, A., Phys. Rev. Lett. 73 (1994) p. 2264; Abanov, Ar., Kalatsky, V., Pokrovsky, V.L., and Saslow, W.M., Phys. Rev. B 51 (1995) p. 1023.CrossRefGoogle Scholar