Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-24T08:49:22.971Z Has data issue: false hasContentIssue false

Structure and Device Characteristics of SrBi2Ta2O9-Based Nonvolatile Random-Access Memories

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Recently there has been a paradigm shift in nonvolatile computer memories from silicon-technology-based EEPROMs (electrically erasable, programmable read-only memories) to devices in which the stored information is coded into + and − polarizations in thin-film ferroelectric capacitors. Such devices have read and erase/rewrite speeds of the order of 1–35 ns, many orders of magnitude faster than the erase/rewrite speeds of the best EEPROMs (Table I). However, fundamental questions concerning their lifetimes had delayed full commercialization. Because ferroelectrics normally have extremely large dielectric constants, their use as nonswitching capacitors in dynamic random-access memories (DRAMs) is also rapidly evolving. The majority of studies to date have emphasized lead zirconate titanate (PZT)-based capacitors for nonvolatile ferroelectric random-access memories (NVFRAMs) and barium strontium titanate-based capacitor DRAMs (see Table II).

Type
Electroceramic Thin Films Part II: Device Applications
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Scott, J.F., de Araujo, C.A. Paz, and McMillan, L.D., “Integrated Ferroelectrics,” Condensed Matter News 1 (1992) p. 16.Google Scholar
2.Scott, J.F., “Ferroelectric Memories,” Phys. World (February 1995) p. 46.CrossRefGoogle Scholar
3.Mihara, T., Watanabe, H., and Yoshimori, H., Nikkei Electron. 581 (1993) p. 94.Google Scholar
4.Moazzami, R., Hu, C., and Shepherd, W.H., IEEE Trans. Electron. Dev. 39 (1992) p. 2044; IEDM Lett. 11 (1990) p. 454.CrossRefGoogle Scholar
5.Al-Shareef, H.N., Dimos, D., Boyle, T.J., Warren, W.L., and Tuttle, B.A., Appl. Phys. Lett. (in press).Google Scholar
6.Janovec, V., Phys. Lett. 99A (1983) p. 384.CrossRefGoogle Scholar
7.Smolensky, G.A. and Agronovskaya, A.I., Sov. Phys. Solid State 1 (1959) p. 149; G.A. Smolensky and A.I. Agronovskaya, Sov. Phys. Solid State 1 (1959) p. 400; G.A. Smolensky and A.I. Agronovskaya, Sov. Phys. Solid State 1 (1959) p. 907.Google Scholar
8.Fang, P.H. and Fatuzzo, E., in J. Phys. Soc. Jpn. 17 (1962) p. 238. H.L Stadler, J. Appl. Phys. 29 (1958) p. 1485; H.L Stadler, J. Appl. Phys. 29 (1958) 33 (1962) p. 3487.CrossRefGoogle Scholar
9.Subbarao, E.C., J. Chem. Phys. 34 (1961) p. 695; Phys. Rev. 122 (1961) p. 804.CrossRefGoogle Scholar
10.Klee, M., Mackens, U., Pankert, J., Brand, W., and Klee, W., in Science and Technology of Electroceramic Thin Films, edited by Auciello, O. and Waser, R. (Kluwer, Dordrecht, 1995) p. 99.CrossRefGoogle Scholar
11.McMillan, L.D., de Araujo, C.A. Paz, Roberts, T., Cuchiaro, J., Scott, M.C., and Scott, J.F., Ferroelecrics 2 (1992) p. 351.Google Scholar
12.Amanuma, K., Hase, T., and Miyasaka, Y., Appl. Phys. Lett. 66 (1994) p. 221.CrossRefGoogle Scholar
13.Dat, R., Lee, J.K., Auciello, O., and Kingon, A.I., Appl. Phys. Lett. 67 (1995) p. 572.CrossRefGoogle Scholar
14.Schonberg, N., Acta Chem. Scand. 8 (1954) p. 620.CrossRefGoogle Scholar
15.Srolovitz, D.J. and Scott, J.F., Phys. Rev. B 34 (1986) p. 1815.CrossRefGoogle Scholar
16.Scott, J.F., Melnick, B.M., McMillan, L.D., and de Araujo, C.A. Paz, Integrated Ferroelectrics 3 (1993) p. 129.Google Scholar
17.Wouters, D.J., Wilems, G.J., and Maes, H.E., Proc. EMF-8, Ferroelectrics (in press).Google Scholar
18.Pawlaczyk, C.Z., Tagantsev, A.K., Brooks, K., Reaney, I.M., Klissurska, R., and Setter, N., Integrated Ferroelectrics 8 (1995) p. 293.CrossRefGoogle Scholar
19.Waser, R., in Science and Technology of Electroceramic Thin Films, edited by Auciello, O. and Waser, R. (Kluwer, Dordrecht, 1995) p. 223.CrossRefGoogle Scholar
20.Brennan, C., Integrated Ferroelectrics 8 (1995) p. 335; C. Brennan, Integrated Ferroelectrics 8 (1995) p. 93.CrossRefGoogle Scholar
21.Scott, J.F, Melnick, B.M., Cuchiaro, J.D., Zuleeg, R., Paz de Araujo, C.A., McMillan, L.D., and Scott, M.C., Integrated Ferroelectrics 4 (1994) p. 85.CrossRefGoogle Scholar
22.Joshi, V., Roy, D., and Mecartney, M.L., Integrated Ferroelectrics 6 (1995) p. 321.CrossRefGoogle Scholar
23.Peng, C.J., Hu, H., and Krupanidhi, S.B., Appl. Phys. Lett. 63 (1993) p. 1038.CrossRefGoogle Scholar
24.de Araujo, C.A. Paz, Cuchiaro, J.D., McMillan, L.D., Scott, M.C., and Scott, J.F., Nature 374 (1995) p. 627.CrossRefGoogle Scholar
25.Robblee, L.S. and Cogan, S.F., “Metals for Medical Electrodes”, Encyclopedia of Materials Science & Engineering, suppl. vol. 1, edited by Chan, R.W. (Pergamon Press, Oxford, 1988).Google Scholar
26.Matsubara, S., Sakuma, T., Yamamichi, S., Yamaguchi, H., and Miyasaka, Y., in Ferroelectric Thin Films, edited by Myers, E.R. and Kingon, A.I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, 1990) p. 243; S. Matsubara, T. Sakuma, S. Yamamichi, H. Yamaguchi, and Y. Miyasaka, in Ferroelectric Thin Films 243 (1992) p. 281.Google Scholar
27.Scott, J.F., in Science and Technology of Electroceramic Thin Films NATO/ASI Book Series E 284, edited by Auciello, O. and Waser, R. (Kluwer, Dordrecht, 1995) p. 249.CrossRefGoogle Scholar
28.Gerson, R. and Marshall, T.C., J. Appl. Phys. 30 (1959) p. 1650.CrossRefGoogle Scholar
29.Sumi, T.et al., Integrated Ferroelectrics 6 (1995) p. 1.CrossRefGoogle Scholar
30.Johnson, P., Scott, J.F.et al., Integrated Ferroelectric (in press).Google Scholar
31.Kwak, B.S., Zhang, K., Boyd, E.P., Erbil, A., and Wilkens, B.J., J. Appl. Phys. 69 (1991) p. 767.CrossRefGoogle Scholar
32.Kay, H.F. and Dunn, J.W., Philos. Mag. 7 (1962) p. 2027.CrossRefGoogle Scholar
33.Scott, J.F., Godfrey, R.B., de Araujo, C.A. Paz, McMillan, L.D., Meadows, H.B., and Golabi, M., Proc. 6th ISAF (IEEE, New York, 1986) p. 569.Google Scholar
34.Scott, J.F., Pouligny, B., Dimmler, K., Parris, M., Butler, D., and Eaton, J., J. Appl. Phys. 62 (1987) p. 4510.CrossRefGoogle Scholar
35.Scott, J.F. and Pouligny, B., J. Appl. Phys. 64 (1988) p. 1547.CrossRefGoogle Scholar
36.Boutin, H., Fraser, B.C., and Jona, F., J. Appl. Phys. 35 (1963) p. 2554.Google Scholar
37.Taylor, G.W., Ferroelectrics 18 (1978) p. 17.CrossRefGoogle Scholar
38.Buhay, H., Sinharoy, S., Francombe, M.H., Kasner, W.H., Talvacchio, J., Park, B.K., Doyle, N.J., Lampe, D.R., and Polinsky, M., Integrated Ferroelectrics 1 (1992) p. 213.CrossRefGoogle Scholar