Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T03:07:50.390Z Has data issue: false hasContentIssue false

Structural Materials: Understanding Atomic-Scale Microstructures

Published online by Cambridge University Press:  02 March 2012

Get access

Abstract

With the ability to locate and identify atoms in three dimensions, atom-probe tomography (APT) has revolutionized our understanding of structure-property relationships in materials used for structural applications. The atomic-scale details of clusters, second phases, and microstructural defects that control alloy properties have been investigated, providing an unprecedented level of detail on the origins of aging behavior, strength, creep, fracture toughness, corrosion, and irradiation resistance. Moreover, atomic-scale microscopy combined with atomistic simulation and theoretical modeling of material behavior can guide new alloy design. In this article, selected examples highlight how APT has led to a deeper understanding of materials structures and therefore properties, starting with the phase transformations controlling the aging and strengthening behavior of complex Al-, Fe-, and Ni-based alloys systems. The chemistry of interfaces and structural defects that play a crucial role in high-temperature strengthening, fracture, and corrosion resistance are also discussed, with particular reference to Zr- and Al-alloys and FeAl intermetallics.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Miller, M.K., Hyde, J.M., Hetherington, M.G., Cerezo, A., Smith, G.D.W., Elliott, C.M., Acta Metall. Mater. 43, 3385 (1995); J.M. Hyde, M.K. Miller, M.G. Hetherington, A. Cerezo, G.D.W. Smith, C.M. Elliott, Acta Metall. Mater. 43, 3415 (1995); 43, 3403 (1995).CrossRefGoogle Scholar
2.Danoix, F., Auger, P., Mat. Charact. 44, 177 (2000).CrossRefGoogle Scholar
3.Hyde, J. M., English, C. A., in Proceedings of MRS 2000 Fall Meeting, Symposium R: Microstructural Processes in Irradiated Materials, Boston, MA, 2730 November 2000, G. E. Lucas, L. Snead, M. A. Kirk, Jr., R. G. Elliman, Eds., 650, R6.6.1. (Materials Research Society, Pittsburgh, PA, 2001).Google Scholar
4.Miller, M. K., Kenik, E. A., Microsc. Microanal. 10, 336 (2002).CrossRefGoogle Scholar
5.Vaumousse, D., Cerezo, A., Warren, P. J., Ultramicroscopy 95, 215 (2003).CrossRefGoogle Scholar
6.Stephenson, L. T., Moody, M. P., Liddicoat, P. V., Ringe, S. P., Microsc. Microanal. 13, 448 (2007).CrossRefGoogle Scholar
7.Moody, M. P., Stephenson, L. T., Ceguerra, A. V., Ringer, S. P., Microsc. Res. Technol. 71, 542 (2008).CrossRefGoogle Scholar
8.Murayama, M., Hono, K., Acta Mater. 47, 1537 (1999).CrossRefGoogle Scholar
9.Dutta, I., Allen, S. M., J. Mater. Sci. Lett. 10, 323 (1991).CrossRefGoogle Scholar
10.Edwards, G. A., Stiller, K., Dunlop, G. L., Couper, M. J., Acta Mater. 46, 389 (1998).CrossRefGoogle Scholar
11.Chakrabarti, D. J., Laughlin, D. E., Progr. Mater. Sci. 49, 389 (2004).CrossRefGoogle Scholar
12.Karnesky, R. A., Van Dalen, M. E., Dunand, D. C., Seidman, D. N., Scripta Mater. 55, 437 (2006).CrossRefGoogle Scholar
13.Fuller, C. B., Seidman, D. N., Acta Mater. 54, 119 (2006).Google Scholar
14.Fisher, J. C., Acta Metall. 2, 9 (1954).CrossRefGoogle Scholar
15.Kovacs, I., Lendvai, J., Nagy, E., Acta Metall. 20, 975 (1972).CrossRefGoogle Scholar
16.Ringer, S. P., Sakurai, T., Polmear, I. J., Acta Mater. 45, 3731 (1997).CrossRefGoogle Scholar
17.Maloney, S. K., Polmear, I. J., Ringer, S. P., Mater. Sci. Forum 331–337, 1055 (2000).CrossRefGoogle Scholar
18.Pereloma, E. V., Shekhter, A., Miller, M. K., Ringer, S. P., Acta Mater. 52, 5589 (2004).CrossRefGoogle Scholar
19.Murayama, M., Hono, K., Miao, W. F., Laughlin, D. E., Metal. Mat. Trans. 32A, 239 (2001).CrossRefGoogle Scholar
20.Esmaeili, S., Lloyd, D. J., Scripta Mater. 50, 155 (2004).CrossRefGoogle Scholar
21.Marceau, R. K. W., Ferragut, R., Dupasquier, A., Iglesias, M. M., Ringer, S. P., Mater. Sci. Forum 519–521, 197 (2006).CrossRefGoogle Scholar
22.Ringer, S. P., Raviprasad, K., Mater. Forum 24, 59 (2000).Google Scholar
23.Honma, T., Saxey, D. W., Ringer, S. P., Mater. Sci. Forum 519–521, 203 (2006).CrossRefGoogle Scholar
24.Lloyd, D. J., in Proc. ICAA–9, Brisbane, Australia, 2004, Nie, J. F., Morton, A. J., Muddle, B. C., Eds. (Institute of Materials Engineering Australasia Ltd, Melbourne), p. 107.Google Scholar
25.Starink, M., Gao, N., Davin, L., Yan, J., Cerezo, A., Philos. Mag. 85, 1395 (2005).CrossRefGoogle Scholar
26.Miller, M. K., Brenner, S. S., Res. Mech. 10, 161 (1984).Google Scholar
27.Buswell, J. T., English, C. A., Hetherington, M. G., Phythian, W. J., Smith, G. D. W., Worral, G. M., Effects of Radiations on Materials: 14th International Symposium, ASTM STP 1046, Packan, N. H., Stoller, R. E., Kumar, A. S., Eds., 127 (American Society for Testing and Materials, Philadelphia, 1990).Google Scholar
28.Miller, M. K., Russell, K. F., J. Nucl. Mater. 371, 145 (2007).CrossRefGoogle Scholar
29.Miller, M. K., Russell, K. F., Sokolov, M. A., Nanstad, R. K., J. Nucl. Mater. 361, 248 (2007).CrossRefGoogle Scholar
30.Miller, M. K., Chernobaeva, A. A., Shtrombakh, Y. I., Russell, K. F., Nanstad, R. K., Erak, D. Y., Zabusov, O. O., J. Nucl. Mater. 385, 615 (2009).CrossRefGoogle Scholar
31.Sudbrack, C. K., Yoon, K. E., Noebe, R. D., Seidman, D. N., Acta Mater. 54, 3199 (2006).CrossRefGoogle Scholar
32.Karnesky, R. A., Sudbrack, C. K., Seidman, D. N., Scripta Mater. 57, 353 (2007).CrossRefGoogle Scholar
33.Mao, Z., Sudbrack, C. K., Yoon, K. E., Martin, G., Seidman, D. N., Nat. Mater. 6, 210 (2007).CrossRefGoogle Scholar
34.Sudbrack, C. K., Noebe, R. D., Seidman, D. N., Acta Mater. 55, 119 (2007).CrossRefGoogle Scholar
35.Sudbrack, C. K., Noebe, R. D., Seidman, D. N., in Solid-Solid Phase Transformations in Inorganic Materials 2005, Howe, J. M., Laughlin, D. E., Lee, J. K., Dahmen, U., Soffa, W. A., Eds. (TMS, 2005), vol. 2, p. 543.Google Scholar
36.Hellman, O. C., Vandenbroucke, J. A., Rusing, J., Isheim, D., Seidman, D. N., Mater. Res. Soc. Symp. Proc. 578, 395 (2000).CrossRefGoogle Scholar
37.Lejcek, P., Surf. Interface Anal. 30, 312 (2000).3.0.CO;2-J>CrossRefGoogle Scholar
38.Krakauer, B. W., Seidman, D. N., Phys. Rev. B 49, 6724 (1993).CrossRefGoogle Scholar
39.Shaskov, D. A., Chisholm, M. F., Seidman, D. N., Acta Mater. 47, 3939 (1999).CrossRefGoogle Scholar
40.Waugh, A. R., Payne, S. M., Worrall, G. M., Smith, G. D. W., J. Phys. 45–C9, 207 (1984).Google Scholar
41.Larson, D. J., Foord, D. T., Petford-Long, A. K., Anthony, T. C., Rozdilsky, I. M., Cerezo, A., Smith, G. W. D., Ultramicroscopy 79, 287 (1999).CrossRefGoogle Scholar
42.Miller, M. K., Russell, K. F., Thompson, G. B., Ultramicroscopy 102, 287 (2005).CrossRefGoogle Scholar
43.Letellier, L., Bostel, A., Blavette, D., Scripta Metall. Mater. 30, 1503 (1994).CrossRefGoogle Scholar
44.Thuvander, M., Miller, M. K., Stiller, K., Mater. Sci. Eng. A 270, 38 (1999).CrossRefGoogle Scholar
45.Miller, M. K., Kenik, E. A., Mousa, M. S., Russell, K. F., Bryhan, A. J., Scripta Mater. 46, 299 (2002).CrossRefGoogle Scholar
46.Abraham, M., Thuvander, M., Lane, M. H., Cerezo, A., Smith, G. D. W., in Nanophase and Nanocomposite MaterialsIII, Komarneni, S., Parker, J. C., Hahn, H., Eds. (Materials Research Society Symposium Proc., 2000) 581, 517.Google Scholar
47.Choi, P., da Silva, M., Klement, U., Klement, U., Al-Kassab, T., Kirchheim, R., Acta Mater. 53, 4473 (2005).CrossRefGoogle Scholar
48.Seto, K., Larson, D. J., Warren, P. J., Smith, G. D. W., Scripta Mater. 40, 1029 (1999).CrossRefGoogle Scholar
49.Maruyama, N., Smith, G. D. W., Cerezo, A., Mater. Sci. Eng. A 353, 126 (2003).CrossRefGoogle Scholar
50.Maruyama, N., Smith, G. D. W., Mater. Sci. Forum 467–470, 949 (2004).CrossRefGoogle Scholar
51.Stiller, K., J. Phys. C8 (Supp. 50), 329 (1989).Google Scholar
52.Lemarchand, D., Cadel, E., Chambreland, S., Blavette, D., Philos. Mag. A 82, 1651 (2002).CrossRefGoogle Scholar
53.Larson, D. J., Miller, M. K., Mater. Sci. Eng. A 250, 65 (1998).CrossRefGoogle Scholar
54.Zhu, C., Xiong, X. Y., Cerezo, A., Hardwicke, R., Krauss, G., Smith, G. D. W., Ultramicroscopy 107, 808 (2007).CrossRefGoogle Scholar
55.Seidman, D. N., Ann. Rev. Mater. Sci. 32, 235 (2002).CrossRefGoogle Scholar
56.Hudson, D., Smith, G. D. W., Scripta Mater. (2009), in press.Google Scholar
57.Marquis, E. A., Seidman, D. N., Acta Mater. 49, 1909 (2001).CrossRefGoogle Scholar
58.Marquis, E. A., Seidman, D. N., Asta, M., Woodward, C. M., Ozolins, V., Phys. Rev. Lett. 91, 36101 (2003).CrossRefGoogle Scholar
59.Marquis, E. A., Seidman, D. N., Asta, M., Woodward, C., Acta Mater. 54, 119 (2006).CrossRefGoogle Scholar
60.Fuller, C. B., Seidman, D. N., Acta Mater. 53, 5415 (2005).CrossRefGoogle Scholar
61.Van Dalen, M.E., Dunand, D. C., Seidman, D. N., Acta Mater. 56, 4369 (2008).CrossRefGoogle Scholar
62.Cottrell, A. H., Bilby, B. A., Proc. Phys. Soc. London A 62, 49 (1949).CrossRefGoogle Scholar
63.Chang, L., Barnard, S. J., Smith, G. D. W., in Fundamentals of Aging and Tempering in Bainitic and Martensitic Steel Products (Speich Symposium), Krauss, G., Repas, P. E., Eds. (Iron and Steel Society, Warrendale, PA, 1992), p. 19.Google Scholar
64.Jayaram, R., Miller, M. K., Scripta Metall. Mater. 33, 19 (1995).CrossRefGoogle Scholar
65.Blavette, D., Cadel, E., Fraczkiewicz, A., Menand, A., Science 286, 2317 (1999).CrossRefGoogle Scholar
66.Crimp, M. A., Vedula, K., Mater. Sci. Eng. 78, 193 (1986).CrossRefGoogle Scholar
67.Besson, R., Legris, A., Morillo, J., Phys. Rev. B 74, 094103 (2006).CrossRefGoogle Scholar