Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T10:02:25.686Z Has data issue: false hasContentIssue false

Sputter-Deposited Shape-Memory Alloy Thin Films: Properties and Applications

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Shape-memory alloy (SMA) thin films formed by sputter deposition have attracted considerable attention in the last decade. Current intensive research demonstrates that unique fine microstructures are responsible for the superior shape-memory characteristics observed in thin films as compared with bulk materials. Simultaneously, much effort has been undertaken to develop and fabricate micro devices actuated by SMA thin films. This article reviews the research to date on shape-memory behavior and the mechanical properties of SMA thin films in connection with their peculiar microstructures. Promising applications such as microvalves are demonstrated, along with a focused discussion on process-related problems. All of the results indicate that thin-film shape-memory actuators are ready to contribute to the development of microelectromechanical systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ikuta, K., in Proc. IEEE Int. Conf. on Robotics and Automation-90 (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1990) p. 2156.CrossRefGoogle Scholar
2.Ray, C.A., Sloan, C.L., Johnson, A.D., Busch, J.D., and Petty, B.R., in Smart Materials Fabrication and Materials for Micro-Electro-Mechanical Systems, edited by Jardine, A.P., Johnson, G.C., Crowson, A., and Allen, M., (Mater. Res. Soc. Symp. Proc. 276, Pittsburgh, 1992) p. 161.Google Scholar
3.Hou, L., Pence, T.J., and Grummon, D.S., in Materials for Smart Systems, edited by George, E.P., Takahashi, S., Trolier-McKinstry, S., Uchino, K., and Wun-Fogle, M. (Mater. Res. Soc. Symp. Proc. 360, Pittsburgh, 1995) p. 369.Google Scholar
4.Ishida, A., Takei, A., and Miyazaki, S., Thin Solid Films 228 (1993) p. 210.CrossRefGoogle Scholar
5.Kawamura, Y., Gyobu, A., Saburi, T., and Asai, M., Mater. Sci. Forum 327–328 (2000) p. 303.CrossRefGoogle Scholar
6.Nakata, Y., Tadaki, T., Sakamoto, H., Tanaka, A., and Shimizu, K., J. Phys. IV (France) 5 (C8) (1995) p. 671.Google Scholar
7.Ishida, A., Ogawa, K., Sato, M., and Miyazaki, S., Metall. Mater. Trans. A 28A (1997) p. 1985.CrossRefGoogle Scholar
8.Kikuchi, T., Ogawa, K., Kajiwara, S., Matsu-naga, T., and Miyazaki, S., Philos. Mag. A 78 (1998) p. 467.CrossRefGoogle Scholar
9.Kajiwara, S., Kikuchi, T., Ogawa, K., Matsunaga, T., and Miyazaki, S., Philos. Mag. Lett. 74 (1996) p. 137.CrossRefGoogle Scholar
10.Kawamura, Y., Gyobu, A., Horikawa, H., and Saburi, T., J. Phys. IV (France) 5 (C8) (1995) p. 683.Google Scholar
11.Miyazaki, S., Nomura, K., Ishida, A., and Kajiwara, S., J. Phys. IV (France) 7 (C5) (1997) p. 275.Google Scholar
12.Kuribayashi, K., in Proc. IEEE Micro Electro Mechanical Systems Workshop (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1990) p. 217.Google Scholar
13.Miyazaki, S., Nomura, K., and Zhirong, H., in Proc. Int. Conf. on Shape Memory and Superelastic Technologies (SMST-94) (The International Organization on Shape Memory and Superelastic Technologies, Santa Clara, CA, 1994) p. 19.Google Scholar
14.Ishida, A., Sato, M., Kimura, T., and Miyazaki, S., Philos. Mag. A 80 (2000) p. 967.CrossRefGoogle Scholar
15.Grummon, D.S. and Zhang, J.P., Phys. Status Solidi A 186 (2001) p. 17.3.0.CO;2-T>CrossRefGoogle Scholar
16.Ishida, A. (unpublished manuscript).Google Scholar
17.Walker, J.A., Mehregany, M., and Gabriel, K.J., Sens. Actuators, A 21–23 (1990) p. 243.CrossRefGoogle Scholar
18.Kohl, M., Dittmann, D., Quandt, E., Winzek, B., Miyazaki, S., and Allen, D.M., Mater. Sci. Eng., A 273–275 (1999) p. 794.Google Scholar
19.Hahm, G., Kahn, H., Phillips, S.M., and Heuer, A.H., in Proc. Solid-State Sensor and Actuator Workshop (Transducer Research Foundation Inc., Cleveland, OH, 2000) p. 230.Google Scholar
20.Benard, W.L., Kahn, H., Heuer, A.H., and Huff, M.A., in Proc. Int. Conf. on Solid-State Sensors and Actuators 1997, p. 361.Google Scholar
21.Johnson, A.D., Micromachine Devices 4 (1999) p. 1.Google Scholar
22.Johnson, A.D. and Martynov, V., in Proc. Int. Conf. on Shape Memory and Superelastic Technologies (SMST-97) (The International Organization on Shape Memory and Superelastic Technologies, Santa Clara, CA, 1997) p. 149.Google Scholar
23.Roth, N.M., U.S. Patent No. 6,096,175 (August 1, 2000).Google Scholar
24.Busch, J.D., Johnson, A.D., Lee, C.H., and Stevenson, D.A., J. Appl. Phys. 68 (1990) p. 6224.CrossRefGoogle Scholar