Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-27T21:01:01.677Z Has data issue: false hasContentIssue false

Spontaneous Atomic Ordering in Semiconductor Alloys: Causes, Carriers, and Consequences

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

For many years, it was believed that when two isovalent semiconductors are mixed, they will phase-separate (like oil and water) at low temperature, they will form a solid solution (like gin and tonic) at high temperatures, but they will never produce ordered atomic arrangements. This view was based on the analysis of the solid-liquid equilibria at high temperatures and on empirical observation of phase separation at low temperatures. These observations were further rationalized and legitimized by applying the classic (Hildebrand) solution models, which predicted just this type of behavior. These models showed that the observed behavior of the AxB1 − x alloys implied a positive excess enthalpy ΔH(x) = E(x)xE(A) − (1 − x)E(B) (where E is the total energy) and that this positiveness (“repulsive A-B interactions”) resulted from the strain energy attendant upon packing two solids with dissimilar lattice constants. The larger the lattice mismatch, the more difficult it was to form the alloy. Common to these approaches (“regular solution theory,” “quasiregular solution theory,” “delta lattice-parameter model,” etc.) was the assumption that the enthalpy ΔH(x) of an alloy depends on its global composition x but not on the microscopic arrangement of atoms (e.g., ordered versus disordered). Thus, ordered and disordered configurations at the same compo sition x were tacitly assumed to have the same excess enthalpy ΔH(x). Clearly the option for ordering was eliminated at the outset. While these theories served to produce very useful depictions of the immiscibility of many semiconductor alloys (and continue to guide strategies of crystal growth), they also cemented the paradigm that semiconductor alloys don't order, they just phase-separate. This was true, at the time.

Type
Compositional Modulation and Ordering in Semiconductors
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Woolley, J.C., in Compound Semiconductors, edited by Willardson, R.K. and Goering, H.L. (Reinhold, New York, 1962) p. 3.Google Scholar
2.Panish, M.B. and Ilegems, M., in Progress in Solid State Chemistry, edited by Reiss, M. and McCaldin, J.O. (Pergamon Press, New York, 1972) p. 39.Google Scholar
3.Stringfellow, G.B., J. Cryst. Growth 27 (1974) p. 21; L.M. Foster, J. Electrochem. Soc. 121 (1976) p. 1662.CrossRefGoogle Scholar
4.Martins, J.L. and Zunger, A., Phys. Rev. Lett. 56 (1986) p. 1400.CrossRefGoogle Scholar
5.Srivastava, G.P., Martins, J.L., and Zunger, A., Phys. Rev. B 31 (1985) p. 2561.CrossRefGoogle Scholar
6.Mbaye, A., Ferreira, L.G., and Zunger, A., Phys. Rev. Lett. 58 (1987) p. 49.CrossRefGoogle Scholar
7.Kuan, T.S., Kuech, T.F., Wang, W.I., and Wilkie, E.L., Phys. Rev. Lett. 54 (1985) p. 201.CrossRefGoogle Scholar
8.Nakayama, H. and Fujita, H., Inst. Phys. Conf. Ser. 79 (1986) p. 289.Google Scholar
9.Jen, H.R., Cheng, M.J., and Stringfellow, G.B., Appl. Phys. Lett. 48 (1986) p. 1603.CrossRefGoogle Scholar
10.Shahid, M.A., Mahajan, S., Laughlin, D.E., and Cox, H.M., Phys. Rev. Lett. 58 (1987) p. 2567.CrossRefGoogle Scholar
11.Gomyo, A., Suzuki, T., and Iijima, S., Phys. Rev. Lett. 60 (1988) p. 2645.CrossRefGoogle Scholar
12.Gomyo, A., Makita, K., Hino, I., and Suzuki, T., Phys. Rev. Lett. 72 (1994) p. 673.CrossRefGoogle Scholar
13.Wei, S-H., Ferreira, L.G., and Zunger, A., Phys. Rev. B 41 (1990) p. 8240.CrossRefGoogle Scholar
14.Dandrea, R.G., Bernard, J.E., Wei, S-H., and Zunger, A., Phys. Rev. Lett. 64 (1990) p. 36.CrossRefGoogle Scholar
15.Froyen, S. and Zunger, A., Phys. Rev. Lett. 66 (1991) p. 2132.CrossRefGoogle Scholar
16.Froyen, S. and Zunger, A., Phys. Rev. B 53 (1996) p. 4570.CrossRefGoogle Scholar
17.Zhang, S.B., Froyen, S., and Zunger, A., Appl. Phys. Lett. 67 (1995) p. 3141.CrossRefGoogle Scholar
18.Zunger, A. and Mahajan, S., “Atomic Ordering and Phase Separation in Epitaxial III-V Alloys,” in Handbook of Semiconductors, vol. 3, edited by Moss, T.S. (Elsevier Science B.V., Amsterdam, 1994) p. 1399.Google Scholar
19.Smith, J.R. and Zangwill, A., Phys. Rev. Lett. 76 (1996) p. 2097.CrossRefGoogle Scholar
20.Ishimaru, M., Matsumura, S., Kuwano, N., and Oki, K., Phys. Rev. B 51 (1995) p. 9707.CrossRefGoogle Scholar
21.Bode, M.M., Ahrenkiel, S.P., Kurtz, S.R., Bertness, K. A., Arent, D.J., and Olson, J., in Optoelectronic Materials—Ordering, Composition Modulation, and Self-Assembled Structures, edited by Jones, E.D., Mascarenhas, A., Petroff, P., and Bhat, R. (Mater. Res. Soc. Symp. Proc. 417, Pittsburgh, 1996) p. 55.Google Scholar
22.Mao, D., Taylor, P.C., Kurtz, S.R., Wu, M.C., and Harrison, W.A., Phys. Rev. Lett. 76 (1996) p. 4769; S-H. Wei and A. Zunger, J. Chem Phys. (in press).CrossRefGoogle Scholar
23.Wei, S-H. and Zunger, A., Phys. Rev. B 49 (1994) p. 14337.CrossRefGoogle Scholar
24.Kanata, T., Nishimoto, M., Nakayama, H., and Nishino, T., Appl. Phys. Lett. 63 (1993) p. 26.CrossRefGoogle Scholar
25.Ernst, P., Geng, C., Scholz, F., Schwizer, H., Zhang, Y., and Mascarenhas, A., Appl. Phys. Lett. 67 (1996) p. 2347.CrossRefGoogle Scholar
26.Laks, D.B., Wei, S-H., and Zunger, A., Phys. Rev. Lett. 69 (1992) p. 3766; Appl. Phys. Lett. 62 (1993) p. 1937.CrossRefGoogle Scholar
27.Kondow, M., Kakibayashi, H., Minagawa, S., Inoue, Y., Nishino, T., and Hamakawa, Y., J. Cryst. Growth 93 (1988) p. 412.CrossRefGoogle Scholar
28.Zunger, A., Wei, S-H., Ferreira, L.G., and Bernard, J.E., Phys. Rev. Lett. 65 (1990) p. 353.CrossRefGoogle Scholar
29.Wei, S-H. and Zunger, A., Appl. Phys. Lett. 56 (1990) p. 662.CrossRefGoogle Scholar
30.Wei, S-H., Franceschetti, A., and Zunger, A., in Optoelectronic Materials — Ordering, Composition Modulation, and Self-Assembled Structures, edited by Jones, E.D., Mascarenhas, A., Petroff, P., and Bhat, R. (Mater. Res. Soc. Symp. Proc. 417, Pittsburgh, 1996) p. 3.Google Scholar
31.Wei, S-H. and Zunger, A., Appl. Phys. Lett. 53 (1988) p. 2077.CrossRefGoogle Scholar
32.Dandrea, R.G. and Zunger, A., Appl. Phys. Lett. 57 (1990) p. 1031.CrossRefGoogle Scholar
33.Takanohashi, T. and Ozeki, M., Jpn. J. Appl. Phys. 30 (1991) p. L956.CrossRefGoogle Scholar
34.Kurtz, S.R., Dawson, L.R., Biefeld, R.M., Follstaedt, D.M., and Doyle, B.L., Phys. Rev. B 46 (1992) p. 1909.CrossRefGoogle Scholar
35.Froyen, S., Zunger, A., and Mascarenhas, A., Appl. Phys. Lett. 68 (1996) p. 2852.CrossRefGoogle Scholar
36.O'Shea, J.J., Reaves, C.M., DenBaars, S.P., Chin, M.A., and Narayamurti, V., Appl. Phys. Lett. 69 (1996) p. 3022.CrossRefGoogle Scholar
37.Schneider, R.P., Jones, E.D., and Follstaedt, D.M., Appl. Phys. Lett. (1994) p. 587.Google Scholar
38.Luo, J.S., Olson, J.M., Bertness, K., Raikh, M.E., and Tsiper, E.V., J. Vac. Sci. Technol. B 12 (1994) p. 2552.CrossRefGoogle Scholar
39.Wei, S-H. and Zunger, A., Phys. Rev. B 51 (1995) p. 14110.CrossRefGoogle Scholar
40.Franceschetti, A., Wei, S-H., and Zunger, A., Phys. Rev. B 52 (1995) p. 13992.CrossRefGoogle Scholar
41.Zhang, Y. and Mascarenhas, A., Phys. Rev. B. 51 (1995) p. 13162; E.D. Jones, C. Geng, F. Scholz, and H. Schweizer, J. Appl. Phys. 81 (1997) p. 2814.CrossRefGoogle Scholar
42.Thomas, R.J., Chandrasekhar, H.R., Chandrasekhar, M., Jones, E.D., and Schneider, R.P., J. Phys. Chem. Solids 56 (1995) p. 357; references therein.CrossRefGoogle Scholar
43.Franceschetti, A. and Zunger, A., Appl. Phys. Lett. 65 (1994) p. 2990.CrossRefGoogle Scholar
44.Ernst, P., Geng, C., Burkard, M., Scholz, F., and Schweizer, H., 23rd Int. Conf. Phys. Semicond. (World Scientific, 1996) p. 469.Google Scholar
45.Driessen, F.A.J.M., Appl. Phys. Lett. 67 (1995) p. 2813; F.A.J.M. Driessen, H.M. Cheong, A. Mascarenhas, S.K. Deb, P.R. Hageman, G.J. Bauhuis, and I.J. Giling, Phys. Rev. B 54 (1996) p. 5263.CrossRefGoogle Scholar
46.Mader, K.A. and Zunger, A., Appl. Phys. Lett. 74 (1994) p. 2882.CrossRefGoogle Scholar
47.Thiel, A. and Koelsch, H., Z. Anorg. Allg. Chem. 66 (1910) p. 288.CrossRefGoogle Scholar
48.Goldschmidt, V.M., Trans. Faraday Society 25 (1929) p. 253.CrossRefGoogle Scholar
49.Goryunova, N. and Fedorova, N., Zh. Tekh. Fiz. 25 (1955) p. 1339.Google Scholar