Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T08:28:55.289Z Has data issue: false hasContentIssue false

Solution-processed graphene materials and composites

Published online by Cambridge University Press:  23 November 2012

Laila Jaber-Ansari
Affiliation:
Materials Science and Engineering, Northwestern University; [email protected]
Mark C. Hersam
Affiliation:
Materials Science and Engineering, Northwestern University; [email protected]
Get access

Abstract

The superlative electronic, optical, mechanical, and chemical properties of graphene suggest broad technological opportunities for graphene-based materials and composites. However, the transition from the research laboratory to widespread commercial utilization requires economical methods for the mass production of graphene and graphene-based materials. Among the emerging methods for synthesizing graphene, solution-based processing holds particular promise because of its low cost, high throughput, chemical versatility, and scalability to large quantities. Furthermore, solution-processed graphene can be seamlessly integrated with other nanomaterials or polymers to yield composites for a wide array of applications such as energy conversion and storage, catalysis, electronics, and high-strength materials. This article highlights the range of techniques being developed for processing graphene in solution with a specific emphasis on solution-based methods for realizing graphene-based composites. In addition to fundamental principles, representative applications for these materials are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Novoselov, K.S., Geim, K.A., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A., Science 306, 666 (2004).CrossRefGoogle Scholar
Hass, J., de Heer, W.A., Conrad, E.H., J. Phys.: Condens. Matter 20, 323202 (2008).Google Scholar
Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M.S., Kong, J., Nano Lett. 9, 30 (2009).CrossRefGoogle Scholar
Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L., Ruoff, R.S., Science 324, 1312 (2009).CrossRefGoogle Scholar
Brodie, B.C., Philos. Trans. R. Soc. London 149, 249 (1859).Google Scholar
Hummers, W.S., Offeman, R.E., J. Am. Chem. Soc. 80, 1339 (1958).CrossRefGoogle Scholar
Kovtyukhova, N.I., Ollivier, P.J., Martin, B.R., Mallouk, T.E., Chizhik, S.A., Buzaneva, E.V., Gorchinskiy, A.D., Chem. Mater. 11, 771 (1999).CrossRefGoogle Scholar
Fan, Z.J., Kai, W., Yan, J., Wei, T., Zhi, L.J., Feng, J., Ren, Y.M., Song, L.P., Wei, F., ACS Nano 5, 191 (2011).CrossRefGoogle Scholar
Xu, Z., Gao, C., ACS Nano 5, 2908 (2011).CrossRefGoogle Scholar
Zhang, J., Yang, H., Shen, G., Cheng, P., Zhang, J., Guo, S., Chem. Commun. 46, 1112 (2010).CrossRefGoogle Scholar
Zhou, X., Liu, Z., Chem. Commun. 46, 2611 (2010).CrossRefGoogle Scholar
Sun, X., Liu, Z., Welsher, K., Robinson, J.T., Goodwin, A., Zaric, S., Dai, H., Nano Res. 1, 203 (2008).CrossRefGoogle Scholar
Gao, W., Alemany, L.B., Ci, L., Ajayan, P.M., Nat. Chem. 1, 403 (2009).CrossRefGoogle Scholar
Li, D., Müller, M.B., Gilje, S., Kaner, R.B., Wallace, G.G., Nat. Nanotechnol. 3, 101 (2008).CrossRefGoogle Scholar
Zhou, Y., Bao, Q., Tang, L.A.L., Zhong, Y., Loh, K.P., Chem. Mater. 21, 2950 (2009).CrossRefGoogle Scholar
Josepovits, K., Sanakis, Y., Petridis, D., De, I., Chem. Mater. 18, 2740 (2006).Google Scholar
Lerf, A., He, H., Forster, M., Klinowski, J., J. Phys. Chem. B 102, 4477 (1998).CrossRefGoogle Scholar
Rodriguez, M.A., Jimenez, V.P.S., Carbon 24, 163 (1986).CrossRefGoogle Scholar
Wang, G., Yang, J., Park, J., Gou, X., Wang, B., Liu, H., Yao, J., J. Phys. Chem. C 112, 8192 (2008).CrossRefGoogle Scholar
Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., Ruoff, R.S., Carbon 45, 1558 (2007).CrossRefGoogle Scholar
Pyun, J., Angew. Chem. 50, 46 (2011).CrossRefGoogle Scholar
Cote, L.J., Kim, J., Tung, V.C., Luo, J., Kim, F., Huang, J., Pure Appl. Chem. 83, 95 (2011).CrossRefGoogle Scholar
Li, S.S., Tu, K.H., Lin, C.C., Chen, C.W., Chhowalla, M., ACS Nano 4, 3169 (2010).CrossRefGoogle Scholar
Murray, I.P., Lou, S.J., Cote, L.J., Loser, S., Kadleck, C.J., Xu, T., Szarko, J.M., Rolczynski, B.S., Johns, J.E., Huang, J., Yu, L., Chen, L.X., Marks, T.J., Hersam, M.C., J. Phys. Chem. Lett. 2, 3006 (2011).CrossRefGoogle Scholar
Loh, K.P., Bao, Q., Eda, G., Chhowalla, M., Nat. Chem. 2, 1015 (2010).CrossRefGoogle Scholar
Yan, J., Zhao, Z., Pan, L., Phys. Status Solidi A 208, 2335 (2011).CrossRefGoogle Scholar
Long, J., Fang, M., Chen, G., J. Mater. Chem. 21, 10421 (2011).CrossRefGoogle Scholar
Xu, Y., Bai, H., Lu, G., Li, C., Shi, G., J. Am. Chem. Soc. 130, 5856 (2008).CrossRefGoogle Scholar
Mei, X., Ouyang, J., Carbon 49, 5389 (2011).CrossRefGoogle Scholar
Ai, K., Liu, Y., Lu, L., Cheng, X., Huo, L., J. Mater. Chem. 21, 3365 (2011).CrossRefGoogle Scholar
Huang, L., Liu, Y., Ji, L.C., Xie, Y.Q., Wang, T., Shi, W.Z., Carbon 49, 2431 (2011).CrossRefGoogle Scholar
Zhang, S., Shao, Y., Liao, H., Engelhard, M.H., Yin, G., Lin, Y., ACS Nano 5, 1785 (2011).CrossRefGoogle Scholar
Wang, Y., Shi, Z., Yin, J., ACS Appl. Mater. Interfaces 3, 1127 (2011).CrossRefGoogle Scholar
Fernandez-Merino, M.J., Guardia, L., Paredes, J.I., Villar-Rodil, S., Solis-Fernandez, P., Martinez-Alonso, A., Tascon, J.M.D., J. Phys. Chem. C 114, 6426 (2010).CrossRefGoogle Scholar
Guo, Y., Wu, B., Liu, H., Ma, Y., Yang, Y., Zheng, J., Yu, G., Liu, Y., Adv. Mater. 23, 4626 (2011).CrossRefGoogle Scholar
Lee, J.K., Smith, K.B., Hayner, C.M., Kung, H.H., Chem. Commun. 46, 2025 (2010).CrossRefGoogle Scholar
Wang, X., Zhi, L., Müllen, K., Nano Lett. 8, 323 (2008).CrossRefGoogle Scholar
Kim, B.J., Pham, V.H., Cuong, T.V., Kim, E.J., Chung, J.S., Hur, S.H., Cho, J.H., J. Mater. Chem. 21, 13068 (2011).CrossRefGoogle Scholar
Mativetsky, J.M., Liscio, A., Treossi, E., Orgiu, E., Zanelli, A., Samorì, P., Palermo, V., J. Am. Chem. Soc. 133, 14320 (2011).CrossRefGoogle Scholar
Suganuma, K., Watanabe, S., Gotou, T., Ueno, K., Appl. Phys. Express 4, 021603 (2011).CrossRefGoogle Scholar
He, Q., Wu, S., Gao, S., Cao, X., Yin, Z., Li, H., Chen, P., Zhang, H., ACS Nano 5, 5038 (2011).CrossRefGoogle Scholar
Wang, S., Ang, P.K., Wang, Z., Tang, A.L.L., Thong, J.T.L., Loh, K.P., Nano Lett. 10, 92 (2010).CrossRefGoogle Scholar
Pang, S., Tsao, H.N., Feng, X., Müllen, K., Adv. Mater. 21, 3488 (2009).CrossRefGoogle Scholar
Eda, G., Fanchini, G., Chhowalla, M., Nat. Nanotechnol. 3, 270 (2008).CrossRefGoogle Scholar
Becerril, H.A., Mao, J., Liu, Z., Stoltenberg, R.M., Bao, Z., Chen, Y., ACS Nano 2, 463 (2008).CrossRefGoogle Scholar
Jiang, H., Small 7, 2413 (2011).CrossRefGoogle Scholar
Li, F., Chai, J., Yang, H., Han, D., Niu, L., Talanta 81, 1063 (2010).CrossRefGoogle Scholar
Ji, Q., Honma, I., Paek, S.M., Akada, M., Hill, J.P., Vinu, A., Ariga, K., Angew. Chem. 49, 9737 (2010).CrossRefGoogle Scholar
Xu, Y., Long, G., Huang, L., Huang, Y., Wan, X., Ma, Y., Chen, Y., Carbon 48, 3308 (2010).CrossRefGoogle Scholar
Liu, Z., He, D., Wang, Y., Wu, H., Wang, J., Sol. Energy Mater. Sol. Cells 94, 1196 (2010).CrossRefGoogle Scholar
Gómez-Navarro, C., Meyer, J.C., Sundaram, R.S., Chuvilin, A., Kurasch, S., Burghard, M., Kern, K., Kaiser, U., Nano Lett. 10, 1144 (2010).CrossRefGoogle Scholar
Tung, V.C., Allen, M.J., Yang, Y., Kaner, R.B., Nat. Nanotechnol. 4, 25 (2009).CrossRefGoogle Scholar
Lotya, M., Hernandez, Y., King, P.J., Smith, R.J., Nicolosi, V., Karlsson, L.S., Blighe, F.M., De, S., Wang, Z., Mcgovern, I.T., Duesberg, G.S., Coleman, J.N., J. Am. Chem. Soc. 131, 3611 (2009).CrossRefGoogle Scholar
Green, A.A., Hersam, M.C., Nano Lett. 9, 4031 (2009).CrossRefGoogle Scholar
Seo, J.W.T., Green, A.A., Antaris, A.L., Hersam, M.C., J. Phys. Chem. Lett. 2, 1004 (2011).CrossRefGoogle Scholar
Green, A.A., Hersam, M.C., J. Phys. Chem. Lett. 1, 544 (2010).CrossRefGoogle Scholar
Castro Neto, A., Guinea, F., Peres, N., Novoselov, K., Geim, A., Rev. Mod. Phys. 81, 109 (2009).CrossRefGoogle Scholar
Zhang, Y., Tang, T.T., Girit, C., Hao, Z., Martin, M.C., Zettl, A., Crommie, M.F., Shen, Y.R., Wang, F., Nature 459, 820 (2009).CrossRefGoogle Scholar
Craciun, M.F., Russo, S., Yamamoto, M., Oostinga, J.B., Morpurgo, A.F., Tarucha, S., Nat. Nanotechnol. 4, 383 (2009).CrossRefGoogle Scholar
Arnold, M.S., Green, A.A., Hulvat, J.F., Stupp, S.I., Hersam, M.C., Nat. Nanotechnol. 1, 60 (2006).CrossRefGoogle Scholar
Green, A.A., Hersam, M.C., Nat. Nanotechnol. 4, 64 (2009).CrossRefGoogle Scholar
Sire, C., Ardiaca, F., Lepilliet, S., Seo, J.W.T., Hersam, M.C., Dambrine, G., Happy, H., Derycke, V., Nano Lett. 12, 1184 (2012).CrossRefGoogle Scholar
Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z., De, S., McGovern, I.T., Holland, B., Byrne, M., Gun’Ko, Y.K., Boland, J.J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A.C., Coleman, J.N., Nat. Nanotechnol. 3, 563 (2008).CrossRefGoogle Scholar
Liu, Y.T., Xie, X.M., Ye, X.Y., Carbon 49, 3529 (2011).CrossRefGoogle ScholarPubMed
O’Neill, A., Khan, U., Nirmalraj, P.N., Boland, J., Coleman, J.N., J. Phys. Chem. C 115, 5422 (2011).CrossRefGoogle Scholar
Liang, Y.T., Hersam, M.C., J. Am. Chem. Soc. 132, 17661 (2010).CrossRefGoogle Scholar
Ang, P.K., Wang, S., Bao, Q., Thong, J.T.L., Loh, K.P., ACS Nano 3, 3587 (2009).CrossRefGoogle Scholar
Li, X., Zhang, G., Bai, X., Sun, X., Wang, X., Wang, E., Dai, H., Nat. Nanotechnol. 3, 538 (2008).CrossRefGoogle Scholar
Zheng, J., Di, C.A., Liu, Y., Liu, H., Guo, Y., Du, C., Wu, C.T., Yu, G., Zhu, D., Chem. Commun. 46, 5728 (2010).CrossRefGoogle Scholar
Behabtu, N., Lomeda, J.R., Green, M.J., Higginbotham, A.L., Sinitskii, A., Kosynkin, D.V., Tsentalovich, D., Parra-Vasquez, A.N.G., Schmidt, J., Kesselman, E., Cohen, Y., Talmon, Y., Tour, J.M., Pasquali, M., Nat. Nanotechnol. 5, 406 (2010).CrossRefGoogle Scholar
Shih, C.J., Vijayaraghavan, A., Krishnan, R., Sharma, R., Han, J.H., Ham, M.H., Jin, Z., Lin, S., Paulus, G.L.C., Reuel, N.F., Wang, Q.H., Blankschtein, D., Strano, M.S., Nat. Nanotechnol. 6, 439 (2011).CrossRefGoogle Scholar
Wang, J., Manga, K.K., Bao, Q., Loh, K.P., J. Am. Chem. Soc. 133, 8888 (2011).CrossRefGoogle Scholar
Shu, Z.X., Mcmillan, R.S., Murray, J.J., Davidson, I.J., J. Am. Chem. Soc. 43, 2230 (1996).Google Scholar
Rauh, R.D., Brummer, S.B., Electrochim. Acta 22, 75 (1977).CrossRefGoogle Scholar
Alanyalıoğlu, M., Segura, J.J., Oró-Solè, J., Casañ-Pastor, N., Carbon 50, 142 (2012).CrossRefGoogle Scholar
Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N., Nano Lett. 8, 902 (2008).CrossRefGoogle Scholar
Lee, C., Wei, X., Kysar, J.W., Hone, J., Science 321, 385 (2008).CrossRefGoogle Scholar
Alzari, V., Nuvoli, D., Scognamillo, S., Piccinini, M., Gioffredi, E., Malucelli, G., Marceddu, S., Sechi, M., Sanna, V., Mariani, A., J. Mater. Chem. 21, 8727 (2011).CrossRefGoogle Scholar
Wang, Y., Shi, Z., Fang, J., Xu, H., Yin, J., Carbon 49, 1199 (2011).CrossRefGoogle ScholarPubMed
Ansari, S., Kelarakis, A., Estevez, L., Giannelis, E.P., Small 6, 205 (2010).CrossRefGoogle Scholar
Wang, H., Hao, Q., Yang, X., Lu, L., Wang, X., Nanoscale 2, 2164 (2010).CrossRefGoogle ScholarPubMed
Yang, X., Li, L., Shang, S., Tao, X.M., Polymer 51, 3431 (2010).CrossRefGoogle Scholar
Zhao, X., Zhang, Q., Chen, D., Lu, P., Macromolecules 43, 2357 (2010).CrossRefGoogle Scholar
Yang, H., Zhang, Q., Shan, C., Li, F., Han, D., Niu, L., Langmuir 26, 6708 (2010).CrossRefGoogle Scholar
Choi, K.S., Liu, F., Choi, J.S., Seo, T.S., Langmuir 26, 12902 (2010).CrossRefGoogle ScholarPubMed
Bai, H., Li, C., Wang, X., Shi, G., Chem. Commun. 46, 2376 (2010).CrossRefGoogle Scholar
Li, J., Guo, S., Zhai, Y., Wang, E., Anal. Chim. Acta 649, 196 (2009).CrossRefGoogle Scholar
Liang, J., Huang, Y., Zhang, L., Wang, Y., Ma, Y., Guo, T., Chen, Y., Adv. Funct. Mater. 19, 2297 (2009).CrossRefGoogle Scholar
Vickery, J.L., Patil, A.J., Mann, S., Adv. Mater. 21, 2180 (2009).CrossRefGoogle Scholar
Kim, H.M., Lee, J.K., Lee, H.S., Thin Solid Films 519, 7766 (2011).CrossRefGoogle Scholar
Santos, C.M., Tria, M.C.R., Vergara, R.A.M.V., Cui, K.M., Pernites, R., Advincula, R.C., Aileen, R., Vergara, M.V., Macromol. Chem. Phys. 212, 1 (2011).CrossRefGoogle Scholar
Das, B., Eswar Prasad, K., Ramamurty, U., Rao, C.N.R., Nanotechnology 20, 125705 (2009).CrossRefGoogle Scholar
Mohamadi, S., Sharifi-Sanjani, N., Polym. Compos. 32, 1451 (2011).CrossRefGoogle Scholar
Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., Ruoff, R.S., Nature 442, 282 (2006).CrossRefGoogle Scholar
Fang, M., Wang, K., Lu, H., Yang, Y., Nutt, S., J. Mater. Chem. 19, 7098 (2009).CrossRefGoogle Scholar
Higginbotham, A.L., Lomeda, J.R., Morgan, A.B., Tour, J.M., ACS Appl. Mater. Interfaces 1, 2256 (2009).CrossRefGoogle Scholar
Wang, Y., Kurunthu, D., Scott, G.W., Bardeen, C.J., J. Phys. Chem. C 114, 4153 (2010).CrossRefGoogle Scholar
Hong, W., Xu, Y., Lu, G., Li, C., Shi, G., Electrochem. Commun. 10, 1555 (2008).CrossRefGoogle Scholar
Yu, J., Jiang, P., Wu, C., Wang, L., Wu, X., Polym. Compos. 32, 1483 (2011).CrossRefGoogle Scholar
Li, G.L., Liu, G., Li, M., Wan, D., Neoh, K.G., Kang, E.T., J. Phys. Chem. C 114, 12742 (2010).CrossRefGoogle Scholar
Li, J., Xie, H., Li, Y., Liu, J., Li, Z., J. Power Sources 196, 10775 (2011).CrossRefGoogle Scholar
Liu, J., Tao, L., Yang, W., Li, D., Boyer, C., Wuhrer, R., Braet, F., Davis, T.P., Langmuir 26, 10068 (2010).CrossRefGoogle Scholar
Salavagione, H.J., Martínez, G., Gómez, M.A., J. Mater. Chem. 19, 5027 (2009).CrossRefGoogle Scholar
Xu, Z., Gao, C., Macromolecules 43, 6716 (2010).CrossRefGoogle Scholar
Hu, H., Wang, X., Wang, J., Wan, L., Liu, F., Zheng, H., Chen, R., Xu, C., Chem. Phys. Lett. 484, 247 (2010).CrossRefGoogle Scholar
Kim, H., Miura, Y., Macosko, C.W., Chem. Mater. 22, 3441 (2010).CrossRefGoogle Scholar
Eda, G., Chhowalla, M., Nano Lett. 9, 814 (2009).CrossRefGoogle Scholar
Spitsina, N.G., Lobach, A.S., Kaplunov, M.G., High Energy Chem. 43, 552 (2010).CrossRefGoogle Scholar
Lu, J., Do, I., Drzal, L.T., Worden, R.M., Lee, I., ACS Nano 2, 1825 (2008).CrossRefGoogle Scholar
Zhou, K., Zhu, Y., Yang, X., Luo, J., Li, C., Luan, S., Electrochim. Acta 55, 3055 (2010).CrossRefGoogle Scholar
Fan, H., Wang, L., Zhao, K., Li, N., Shi, Z., Ge, Z., Jin, Z., Biomacromolecules 11, 2345 (2010).CrossRefGoogle Scholar
Yang, X., Tu, Y., Li, L., Shang, S., Tao, X.M., ACS Appl. Mater. Interfaces 2, 1707 (2010).CrossRefGoogle Scholar
Kulkarni, D.D., Choi, I., Singamaneni, S.S., Tsukruk, V.V., ACS Nano 4, 4667 (2010).CrossRefGoogle Scholar
Cai, D., Song, M., Xu, C., Adv. Mater. 20, 1706 (2008).CrossRefGoogle Scholar
Hong, T.K., Lee, D.W., Choi, H.J., Shin, H.S., Kim, B.S., ACS Nano 4, 3861 (2010).CrossRefGoogle Scholar
Kim, Y.K., Min, D.H., Langmuir 25, 11302 (2009).CrossRefGoogle Scholar
Tung, V.C., Chen, L.M., Allen, M.J., Wassei, J.K., Nelson, K., Kaner, R.B., Yang, Y., Nano Lett. 9, 1949 (2009).CrossRefGoogle Scholar
Liu, X., Pan, L., Lv, T., Zhu, G., Sun, Z., Sun, C., Chem. Commun. 47, 11984 (2011).CrossRefGoogle Scholar
Kim, J., Im, H., Kim, J.M., Kim, J., J. Mater. Sci. 47, 1418 (2011).CrossRefGoogle Scholar
Zhang, X.Y., Li, H.P., Cui, X.L., Lin, Y., J. Mater. Chem. 20, 2801 (2010).CrossRefGoogle Scholar
Xiang, H., Zhang, K., Ji, G., Lee, J.Y., Zou, C., Chen, X., Wu, J., Carbon 49, 1787 (2011).CrossRefGoogle Scholar
He, H., Gao, C., ACS Appl. Mater. Interfaces 2, 3201 (2010).CrossRefGoogle Scholar
Wu, Z.S., Ren, W., Wang, D.W., Li, F., Liu, B., Cheng, H.M., ACS Nano 4, 5835 (2010).CrossRefGoogle Scholar
Ji, L., Tan, Z., Kuykendall, T.R., Aloni, S., Xun, S., Lin, E., Battaglia, V., Zhang, Y., Phys. Chem. Chem. Phys. 13, 7170 (2011).CrossRefGoogle Scholar
Zhao, B., Zhang, G., Song, J., Jiang, Y., Zhuang, H., Liu, P., Fang, T., Electrochim. Acta 56, 7340 (2011).CrossRefGoogle Scholar
Zhang, D., Liu, X., Wang, X., J. Inorg. Biochem. 105, 1181 (2011).CrossRefGoogle Scholar
Zou, F., Yu, Y., Cao, N., Wu, L., Zhi, J., Scripta Mater. 64, 621 (2011).CrossRefGoogle Scholar
Xu, W.P., Zhang, L.C., Li, J.P., Lu, Y., Li, H.H., Ma, Y.N., Wang, W.D., Yu, S.H., J. Mater. Chem. 21, 4593 (2011).CrossRefGoogle Scholar
Li, B., Cao, H., Yin, G., Lu, Y., Yin, J., J. Mater. Chem. 21, 10645 (2011).CrossRefGoogle Scholar
Chang, H., Sun, Z., Ho, K.Y.F., Tao, X., Yan, F., Kwok, W.M., Zheng, Z., Nanoscale 3, 258 (2011).CrossRefGoogle Scholar
Yang, X., Xu, M., Qiu, W., Chen, X., Deng, M., Zhang, J., Iwai, H., Watanabe, E., Chen, H., J. Mater. Chem. 21, 8096 (2011).CrossRefGoogle Scholar
Chen, S., Zhu, J., Wang, X., J. Solid State Chem. 184, 1393 (2011).CrossRefGoogle Scholar
He, F.A., Fan, J.T., Song, F., Zhang, L.M., Chan, H.L.W., Nanoscale 3, 1182 (2011).CrossRefGoogle ScholarPubMed
HongKun, H., Chao, G., Sci. Chin. Chem. 54, 397 (2011).Google Scholar
Guo, P., Zhu, G., Song, H., Chen, X., Zhang, S., Phys. Chem. Chem. Phys. 13, 17818 (2011).CrossRefGoogle Scholar
Wang, G., Wang, B., Wang, X., Park, J., Dou, S., Ahn, H., Kim, K., J. Mater. Chem. 19, 8378 (2009).CrossRefGoogle Scholar
Zhang, K., Wang, H., He, X., Liu, Z., Wang, L., Gu, L., Xu, H., Han, P., Dong, S., Zhang, C., Yao, J., Cui, G., Chen, L., J. Mater. Chem. 21, 11916 (2011).CrossRefGoogle Scholar
Deng, L., Zhu, G., Wang, J., Kang, L., Liu, Z.H., Yang, Z., Wang, Z., J. Power Sources 196, 10782 (2011).CrossRefGoogle Scholar
Sun, Y., Hu, X., Luo, W., Huang, Y., ACS Nano 5, 7100 (2011).CrossRefGoogle Scholar
Wang, H., Cui, L.F., Yang, Y., Casalongue, H.S., Robinson, J.T., Liang, Y., Cui, Y., Dai, H., J. Am. Chem. Soc. 132, 13978 (2010).CrossRefGoogle Scholar
Paek, S.M., Yoo, E., Honma, I., Nano Lett. 9, 72 (2009).CrossRefGoogle Scholar
Qiu, Y., Yan, K., Yang, S., Jin, L., Deng, H., Li, W., ACS Nano 4, 6515 (2010).CrossRefGoogle Scholar
Wang, B., Wu, X.L., Shu, C.Y., Guo, Y.G., Wang, C.R., J. Mater. Chem. 20, 10661 (2010).CrossRefGoogle Scholar
Liu, X., Pan, L., Lv, T., Lu, T., Zhu, G., Sun, Z., Sun, C., Catal. Sci. Technol. 1 1189 (2011).CrossRefGoogle Scholar
Liang, Y.T., Vijayan, B.K., Gray, K.A., Hersam, M.C., Nano Lett. 11, 2865 (2011).CrossRefGoogle Scholar
Lu, J., Yang, J.X., Wang, J., Lim, A., Wang, S., Loh, K.P., ACS Nano 3, 2367 (2009).CrossRefGoogle Scholar
Ling, C., Setzler, G., Lin, M.W., Dhindsa, K.S., Jin, J., Yoon, H.J., Kim, S.S., Cheng, M., Widjaja, N., Zhou, Z., Nanotechnology 22, 325201 (2011).CrossRefGoogle Scholar
Patil, A.J., Vickery, J.L., Scott, T.B., Mann, S., Adv. Mater. 21, 3159 (2009).CrossRefGoogle Scholar
Zhang, L., Xia, J., Zhao, Q., Liu, L., Zhang, Z., Small 6, 537 (2010).CrossRefGoogle Scholar
Duch, M.C., Budinger, G.R.S., Liang, Y.T., Soberanes, S., Urich, D., Chiarella, S.E., Campochiaro, L.A., Gonzalez, A., Chandel, N.S., Hersam, M.C., Mutlu, G.M., Nano Lett. 11, 5201 (2011).CrossRefGoogle Scholar