Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T04:22:16.524Z Has data issue: false hasContentIssue false

Solute trapping in rapid solidification

Published online by Cambridge University Press:  10 November 2020

Tatu Pinomaa
Affiliation:
VTT Technical Research Centre of Finland Ltd., Finland; [email protected]
Anssi Laukkanen
Affiliation:
VTT Technical Research Centre of Finland Ltd., Finland; [email protected]
Nikolas Provatas
Affiliation:
McGill University, Canada; [email protected]
Get access

Abstract

Rapid solidification gives rise to solute trapping, which decreases solute partitioning and alters equilibrium solidification velocity-undercooling relationships. These effects influence microsegregation, solidification morphology, and the emergent microstructure length scales. Here, we review solute trapping and solute drag in rapid solidification in terms of theory, simulation methods, and experimental techniques. The basic theory to describe solute trapping is contained in the continuous growth model. This model breaks down at high solidification velocities, where solidification transitions abruptly to complete trapping, a limit that can be captured with the local nonequilibrium model. Solute trapping theories contain unknown parameters. Their determination from atomistic simulations or pulsed laser melting experiments is discussed. Microstructural evolution in rapid solidification can be readily investigated with the phase-field method, various alternatives of which are presented here. Uncertainties related to kinetic parameters and heat transfer during rapid solidification can be studied by comparing phase-field simulations to dynamic transmission electron microscopy observations.

Type
Processing Metallic Materials Far from Equilibrium
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cahn, J.W., The Selected Works of John W. Cahn (Wiley, New York, 1998).Google Scholar
Aziz, M.J., Metall. Mater. Trans. A 27A, 67 (1996).Google Scholar
Aziz, M.J., Boettinger, W., Acta Metall. Mater. 42, 527 (1994).10.1016/0956-7151(94)90507-XCrossRefGoogle Scholar
Trivedi, R., Kurz, W., Acta Metall. Mater. 42, 15 (1994).10.1016/0956-7151(94)90044-2CrossRefGoogle Scholar
Lavernia, E.J., Srivatsan, T.S., J. Mater. Sci. 45, 287 (2010).10.1007/s10853-009-3995-5CrossRefGoogle Scholar
David, S.A., Babu, S.S., Vitek, J.M., JOM 55, 14 (2003).10.1007/s11837-003-0134-7CrossRefGoogle Scholar
DebRoy, T., Wei, H.L., Zuback, J., Mukherjee, T., Elmer, J., Milewski, J., Beese, A., Wilson-Heid, A., De, A., Zhang, W., Prog. Mater Sci. 92, 112 (2018).10.1016/j.pmatsci.2017.10.001CrossRefGoogle Scholar
McKeown, J.T., Wiezorek, J.M., Clarke, A.J., MRS Bull. 45 (11), 916 (2020).Google Scholar
Jackson, K.A., Beatty, K.M., Gudgel, K.A., J. Cryst. Growth 271, 481 (2004).10.1016/j.jcrysgro.2004.07.073CrossRefGoogle Scholar
Hillert, M., Sundman, B., Acta Metall. 25, 11 (1977).10.1016/0001-6160(77)90240-1CrossRefGoogle Scholar
Aziz, M.J., Kaplan, T., Acta Metall. 36, 2335 (1988).10.1016/0001-6160(88)90333-1CrossRefGoogle Scholar
Yang, Y., Humadi, H., Buta, D., Laird, B.B., Sun, D., Hoyt, J.J., Asta, M., Phys. Rev. Lett. 107, 025505 (2011).10.1103/PhysRevLett.107.025505CrossRefGoogle Scholar
Raman, S., Hoyt, J.J., Saidi, P., Asta, M., Comput. Mater. Sci. 182, 109773 (2020).10.1016/j.commatsci.2020.109773CrossRefGoogle Scholar
Kittl, J., Sanders, P.G., Aziz, M.J., Brunco, D.P., Thompson, M.O., Acta Mater. 48, 4797 (2000).10.1016/S1359-6454(00)00276-7CrossRefGoogle Scholar
Humadi, H., Hoyt, J.J., Provatas, N., Phys. Rev. E 87, 022404 (2013).10.1103/PhysRevE.87.022404CrossRefGoogle Scholar
Hillert, M., Acta Mater. 47, 4481 (1999).10.1016/S1359-6454(99)00336-5CrossRefGoogle Scholar
Ahmad, N.A., Wheeler, A.A., Boettinger, W.J., McFadden, G.B., Phys. Rev. E 58, 3436 (1998).10.1103/PhysRevE.58.3436CrossRefGoogle Scholar
Galenko, P.K., Sobolev, S., Phys. Rev. E 55, 343 (1997).10.1103/PhysRevE.55.343CrossRefGoogle Scholar
Galenko, P.K., Jou, D., Phys. Rep. 818, 1 (2019).10.1016/j.physrep.2019.06.002CrossRefGoogle Scholar
Galenko, P.K., Phys. Rev. E 76, 031606 (2007).10.1103/PhysRevE.76.031606CrossRefGoogle Scholar
Steinbach, I., Model. Simul. Mater. Sci. Eng. 17, 073001 (2009).10.1088/0965-0393/17/7/073001CrossRefGoogle Scholar
Provatas, N., Elder, K., Phase-Field Methods in Materials Science and Engineering (Wiley, Weinheim, Germany, 2011).10.1002/9783527631520CrossRefGoogle Scholar
Almgren, R., SIAM J. Appl. Math. 59, 2086 (1999).Google Scholar
Echebarria, B., Folch, R., Karma, A., Plapp, M., Phys. Rev. E 70, 061604 (2004).10.1103/PhysRevE.70.061604CrossRefGoogle Scholar
Pinomaa, T., Provatas, N., Acta Mater. 168, 167 (2019).10.1016/j.actamat.2019.02.009CrossRefGoogle Scholar
Steinbach, I., Zhang, L., Plapp, M., Acta Mater. 60, 2689 (2012).10.1016/j.actamat.2012.01.035CrossRefGoogle Scholar
Kurz, W., Trivedi, R., Metall. Mater. Trans. A 27, 625 (1996).10.1007/BF02648951CrossRefGoogle Scholar
Asta, M., Beckermann, C., Karma, A., Kurz, W., Napolitano, R., Plapp, M., Purdy, G., Rappaz, M., Trivedi, R., Acta Mater. 57, 941 (2009).10.1016/j.actamat.2008.10.020CrossRefGoogle Scholar
Kurz, W., Trivedi, R., Metall. Mater. Trans. A 27, 625 (1996).10.1007/BF02648951CrossRefGoogle Scholar
McKeown, J., Kulovits, A., Liu, C., Zweiacker, K., Reed, B., LaGrange, T., Wiezorek, J.M., Campbell, G., Acta Mater. 65, 56 (2014).10.1016/j.actamat.2013.11.046CrossRefGoogle Scholar
Bathula, V., Liu, C., Zweiacker, K., McKeown, J., Wiezorek, J., Acta Mater. 195, 341 (2020).10.1016/j.actamat.2020.04.006CrossRefGoogle Scholar
Conti, M., Phys. Rev. E 58, 2071 (1998).10.1103/PhysRevE.58.2071CrossRefGoogle Scholar
Pinomaa, T., McKeown, J.T., Wiezorek, J.M., Provatas, N., Laukkanen, A., Suhonen, T., J. Cryst. Growth 532, 125418 (2020).10.1016/j.jcrysgro.2019.125418CrossRefGoogle Scholar