Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-30T20:19:40.690Z Has data issue: false hasContentIssue false

Soft Solution Processing: A Strategy for One-Step Processing of Advanced Inorganic Materials

Published online by Cambridge University Press:  31 January 2011

Get access

Extract

The term “materials cycle” is generally used to describe the synthesis of substances from raw materials (sometimes including the synthesis of manufactured raw materials), the fabrication of shaped materials, their use, and their eventual disposal. It is well known that all materials are extracted from the earth, then are converted to functional products through various fabrication processes, usually involving a high expenditure of energy, which in turn contributes to environmental problems such as global warming.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Szekely, J. and Trapaga, G., J. Mater. Res. 10 (1995) p. 2178.CrossRefGoogle Scholar
2.Yoshimura, M., J. Mater. Res. 13 (4) (1998) p. 796.Google Scholar
3.Baijal, M.D., Plastic Polymer Science and Technology (John Wiley & Sons, New York, 1982).Google Scholar
4.Higgins, R.A., Engineering Metallurgy (Edward Arnold, London, 1993).Google Scholar
5.Kingery, W.D., Bowen, H.K., and Uhlmann, D.R., Introduction to Ceramics (John Wiley & Sons, New York, 1976).Google Scholar
6.Ring, T.A., Fundamentals of Ceramic Powder Processing and Synthesis (Academic Press, San Diego, 1996).Google Scholar
7.Ohring, M., The Materials Science of Thin Films (Academic Press, 1992).Google Scholar
8.Morosanu, C.E., Thin Films by Chemical Vapour Deposition (Elsevier, Amsterdam, 1990).Google Scholar
9.Parker, E.H.C., The Technology and Physics of Molecular Beam Epitaxy (Plenum Press, New York, 1985).CrossRefGoogle Scholar
10.Yoshimura, M. and Suchanek, W., Solid State Ionics 98 (1997) p. 197.CrossRefGoogle Scholar
11.Yoshimura, M., Suchanek, W., and Han, K.-S., J. Mater. Chem. 9 (1999) p. 77.CrossRefGoogle Scholar
12.Yoshimura, M., Han, K.-S., and Suchanek, W., Bull. Mater. Sci. 22 (1999) p. 193.Google Scholar
13. JANAF Thermochemical Tables (National Bureau of Standards, American Chemical Society, American Institute of Physics, 19681982).Google Scholar
14.Lencka, M.M. and Riman, R.E., Chem. Mater. 5 (1993) p. 61.Google Scholar
15.Pamplin, B.R., ed., Crystal Growth (Pergamon Press, Oxford, UK, 1980).Google Scholar
16.Switzer, J.A., Hung, C.-J., Breyfogle, B.E., Shumsky, M.G., Van Leeuwen, R., and Golden, T.D., Science 264 (1994) p. 1573.Google Scholar
17.Phillips, R.J., Shane, M.J., and Switzer, J.A., J. Mater. Res. 4 (1989) p. 923.Google Scholar
18.Roy, R., J. Solid State Chem. 111 (1994) p. 11.CrossRefGoogle Scholar
19.Bromberg, S.E., Yang, H., Asplund, M.C., Lian, T., McNamara, B.K., Kotz, K.T., Yeston, J.S., Wilkens, M., Frei, H., Bergman, R.G., and Harris, C.B., Science 278 (1997) p. 260.CrossRefGoogle Scholar
20.Mann, S., Archibald, D.D., Didymus, J.M., Douglas, T., Heywood, B.R., Meldrum, F.C., and Reeves, N.J., Science 261 (1993) p. 1286.Google Scholar
21.Rittner, M.N. and Abraham, T., Am. Ceram. Soc. Bull. 76 (1997) p. 51.Google Scholar
22.Lueth, H., Phys. Status Solidi B 192 (1995) p. 287.CrossRefGoogle Scholar
23.Sundaram, M., Chalmers, S.A., Hopkins, P.F., and Gossard, A.C., Science 254 (1991) p. 1326.CrossRefGoogle Scholar
24.Cahn, R.W., Nature 359 (1992) p. 591.CrossRefGoogle Scholar
25.Parkin, S.S.P., Annu. Rev. Mater. Sci. 25 (1995) p. 357.Google Scholar
26.Devoret, M.H., Esteve, D., and Urbina, C., Nature 360 (1992) p. 547.Google Scholar
27.Mannhart, J., Philos. Trans. R. Soc. London, Ser. A 353 (1995) p. 377.Google Scholar
28.Burggraaf, A.J., Keizer, K., and Van Hassel, B.A., Solid State Ionics 32–33 (1989) p. 771.CrossRefGoogle Scholar
29.Greer, A.L., Nature 368 (1994) p. 688.CrossRefGoogle Scholar
30.Suchanek, W. and Yoshimura, M., J. Mater. Res. 13 (1998) p. 94.CrossRefGoogle Scholar
31.Stupp, S.I. and Braun, P.V., Science 277 (1997) p. 1242.Google Scholar
32.Edelstein, A.S. and Cammarata, R.C., eds., Nanomaterials: Synthesis, Properties, and Applications (Institute of Physics, Bristol, UK, 1996).Google Scholar
33.Stroscio, J.A. and Eigler, D.M., Science 254 (1991) p. 1319.CrossRefGoogle Scholar
34.Berggren, K.K., Bard, A., Wilbur, J.L., Gillaspy, J.D., Helg, A.G., McClelland, J.J., Rolston, S.L., Phillips, W.D., Prentiss, M., and Whitesides, G.M., Science 269 (1995) p. 1255.CrossRefGoogle Scholar
35.Mueller, W.T., Klein, D.L., Lee, T., Clarke, J., McEuen, P.L., and Schultz, P.G., Science 268 (1995) p. 272.Google Scholar
36.Mann, S., ed., Biomimetic Materials Chemistry (WILEY-VCH, New York, 1996).Google Scholar
37.Gunderson, S.L. and Schiavone, R.C., in International Encyclopedia of Composites, edited by Lee, S.M. (VCH Publishers, New York, 1991) p. 324.Google Scholar
38.Bunker, B.C., Rieke, P.C., Tarasevich, B.J., Campbell, A.A., Fryxell, G.E., Graff, G.L., Song, L., Liu, J., Virden, J.W., and McVay, G.L., Science 264 (1994) p. 48.CrossRefGoogle Scholar
39.Aksay, I.A., Trau, M., Manne, S., Honma, I., Yao, N., Zhou, L., Fenter, P., Eisenberger, P.M., and Gruner, S.M., Science 273 (1996) p. 892.CrossRefGoogle Scholar
40.Heuer, A.H., Fink, D.J., Laraia, V.J., Arias, J.L., Calvert, P.D., Kendall, K., Messing, G.L., Blackwell, J., Rieke, P.C., Thompson, D.H., Wheeler, A.P., Veis, A., and Caplan, A.I., Science 255 (1992) p. 1098.Google Scholar
41.Mann, S., J. Mater. Chem. 5 (1995) p. 935.Google Scholar
42.Moore, J.S., guest editor, “Supramolecular Materials,” MRS Bull. 25 (4) (2000) p. 26.Google Scholar
43.Mann, S., Nature 365 (1993) p. 499.CrossRefGoogle Scholar
44.Mirkin, C.A., MRS Bull. 25 (1) (2000) p. 43.CrossRefGoogle Scholar
45.Mark, J.E. and Calvert, P.D., Mater. Sci. Eng., C 1 (1994) p. 159.Google Scholar
46.Walsh, D., Hopwood, J.D., and Mann, S., Science 264 (1994) p. 1576.CrossRefGoogle Scholar
47. Leonardo da Vinci, circa 1500, cited by Thompson, B.S., SAMPE J. 32 (1996) p. 38.Google Scholar
48.Philp, D. and Stoddart, J.F., Angew. Chem., Int. Ed. Engl. 35 (1996) p. 1155.Google Scholar
49.Andres, R.P., Bielefeld, J.D., Henderson, J.I., Janes, D.B., Kolagunta, V.R., Kubiak, C.P., Mahoney, W.J., and Osifchin, R.G., Science 273 (1996) p. 1690.Google Scholar
50.Xia, Y.N., Rogers, J.A., Paul, K.E., and Whitesides, G.M., Chem. Rev. 99 (1999) p. 1823.Google Scholar
51.Bowden, N., Terfort, A., Carbeck, J., and Whitesides, G.M., Science 276 (1997) p. 233.CrossRefGoogle Scholar
52.Liu, J., Kim, A.Y., Wang, L.Q., Palmer, B.J., Chen, Y.L., Bruinsma, P., Bunker, B.C., Exarhos, G.J., Graff, G.L., Rieke, P.C., Fryxell, G.E., Virden, J.W., Tarasevich, B.J., and Chick, L.A., Adv. Colloid Interface Sci. 69 (1996) p. 131.CrossRefGoogle Scholar
53.Dueweke, M., Dierker, U., and Hubler, A., Phys. Rev. E 54 (1996) p. 496.Google Scholar
54.Clem, P.G., Jeon, N.L., Nuzzo, R.G., and Payne, D.A., J. Am. Ceram. Soc. 80 (1997) p. 2821.Google Scholar
55.Niesen, T.P., De Guire, M.R., Bill, J., Aldinger, F., Rühle, M., Fischer, A., Jentoft, F.C., and Schlögel, R., J. Mater. Res. 14 (1999) p. 2464.CrossRefGoogle Scholar
56.Fendler, J.H., Chem. Mater. 8 (1996) p. 1616.Google Scholar
57.Ulman, A., Chem. Rev. 96 (1996) p. 1533.Google Scholar
58.Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vatuli, J.C., and Beck, J.S., Nature 359 (1992) p. 710.CrossRefGoogle Scholar
59.Ozin, G.A., Adv. Mater. 4 (1992) p. 612.Google Scholar
60.Martin, C.R., Chem. Mater. 8 (1996) p. 1739.CrossRefGoogle Scholar
61.Imai, H., Takei, Y., Shimizu, K., Matsuda, M., and Hirashima, H., J. Mater. Chem. 9 (1999) p. 2971.Google Scholar
62.Ajayan, P.M., Stephan, O., Redlich, P., and Colliex, C., Nature 375 (1995) p. 564.CrossRefGoogle Scholar
63.Schacht, S., Huo, Q., Voigt-Martin, I.G., Stucky, G.D., and Schuth, F., Science 273 (1996) p. 768.Google Scholar
64.Heywood, B.R. and Mann, S., Adv. Mater. 6 (1994) p. 9.Google Scholar
65.van Blaaderen, A., Ruel, R., and Wiltzius, P., Nature 385 (1997) p. 321.Google Scholar
66.Braun, P.V., Osenar, P., and Stupp, S.I., Nature 380 (1996) p. 325.Google Scholar
67.Steinke, J., Sherrington, D.C., and Dunkin, I.R., Adv. Polym. Sci. 123 (1995) p. 81.CrossRefGoogle Scholar
68.Chambron, J.C., Dietrich-Buchecker, C., and Sauvage, J.-P., Compr. Supramol. Chem. 9 (1996) p. 43.Google Scholar
69.Livage, J., Brec, R., Catherine, Y., Cot, L., Figlarz, M., Portier, J., Rouxel, J., and Tournoux, M., Ann. Chim. 14 (1989) p. 353.Google Scholar
70.Figlarz, M., Mater. Sci. Forum 152–153 (1994) p. 55.CrossRefGoogle Scholar
71.Matijevic, E., in Chemical Processing of Advanced Materials, edited by Hench, L.L. and West, J.K. (John Wiley & Sons, New York, 1992) p. 513.Google Scholar
72.Rouxel, J., Adv. Synth. React. Solids 2 (1994) p. 27.Google Scholar
73.Domen, K., Takata, T., Hara, M., and Kondo, J.N., Bull. Chem. Soc. Jpn. 73 (2000) p. 1307.Google Scholar
74.McKinney, B.L. and Faust, C.L., J. Electrochem. Soc. 124 (1977) p. 379C.CrossRefGoogle Scholar
75.Schultze, J.W. and Tsakova, V., Electrochim. Acta 44 (1999) p. 3605.Google Scholar
76.Kolb, D.M., Ulmann, R., and Ziegler, J.C., Electrochim. Acta 43 (1998) p. 2751.Google Scholar
77.Searson, P.C., Sol. Energy Mater. Sol. Cells 27 (1992) p. 377.Google Scholar
78.Mitchell, P.J. and Wilcox, G.D., Nature 357 (1992) p. 395.Google Scholar
79.Yoshino, K. and Ebina, N.. in Electrochemically Deposited Thin Films, edited by Paunovic, M., Ohno, I., and Miyoshi, Y. (The Electrochemical Society, Proc. 93–26, Pennington, NJ, 1993) p. 370.Google Scholar
80.Podlaha, E.J. and Landolt, D., J. Electrochem. Soc. 144 (1997) p. L200.Google Scholar
81.Ross, C.A., Annu. Rev. Mater. Sci. 24 (1994) p. 159.Google Scholar
82.Villegas, I. and Stickney, J.L., J. Electrochem. Soc. 139 (1992) p. 686.Google Scholar
83.Rabenau, A., Angew. Chem., Int. Ed. Engl. 24 (1985) p. 1026.Google Scholar
84.Byrappa, K. and Yoshimura, M., Handbook of Hydrothermal Technology (William Andrews, LLC/Noyes Publications, Park Ridge, NJ, 2000).Google Scholar
85.Moriyoshi, T., Uosaki, Y., Kimura, H., and Ikemoto, N., in Proc. 2nd Int. Conf. on Solvothermal Reactions, edited by Moriyoshi, T. (Research Institute of Solvothermal Technology, Takamatsu, Japan, 1996) p. 50.Google Scholar
86.Uchida, M., Yoshioka, T., and Okuwaki, A., Joint 6th Int. Symp. on Hydrothermal Reactions and 4th Int. Conf. on Solvothermal Reactions, Extended Abstracts, edited by Yanagisawa, K. (Kochi, Japan, 2000) p. 148.Google Scholar
87.Van Hout, M.J.G., Verplanke, J.C., and Robertson, J.M., Mater. Res. Bull. 10 (1975) p. 125.Google Scholar
88.Lange, F.F., Science 273 (1996) p. 903.Google Scholar
89.Song, S.-W., Han, K.-S., and Yoshimura, M., J. Am. Ceram. Soc. (2000) in press.Google Scholar
90.Suchanek, W., Watanabe, T., Sakurai, B., and Yoshimura, M., in High-Density Magnetic Recording and Integrated Magneto-Optics: Materials and Devices, edited by Bain, J., Levy, M., Lorenzo, J., Nolan, T., Okamura, Y., Rubin, K., Stadler, B., and Wolfe, R. (Mater. Res. Soc. Symp. Proc. 517, Warrendale, PA, 1998) p. 639.Google Scholar
91.Sômiya, S., ed., Hydrothermal Reactions for Materials Science and Engineering. An Overview of Research in Japan (Elsevier Science, London, 1989).Google Scholar
92.Yamasaki, N., Weiping, T., and Yanagisawa, K., J. Mater. Res. 8 (1993) p. 1972.Google Scholar
93.Helmkamp, M.M. and Davis, M.E., Annu. Rev. Mater. Sci. 25 (1995) p. 161.CrossRefGoogle Scholar
94.Gogotsi, Y.G. and Yoshimura, M., Nature 367 (1994) p. 628.Google Scholar
95.Zhao, X.Z., Roy, R., Cherian, K.A., and Badzian, A., Nature 385 (1997) p. 513.CrossRefGoogle Scholar
96.Demazeau, G., Marbeuf, A., Pouchard, M., and Hagenmuller, P., J. Solid State Chem. 3 (1971) p. 582.Google Scholar
97.Eckert, C.A., Knutson, B.L., and Debenedetti, P.G., Nature 383 (1996) p. 313.Google Scholar
98.Demazeau, G., in Proc. Int. Conf. on Solvothermal Reactions, edited Moriyoshi, T. (Research Institute of Solvothermal Technology, Takamatsu, Japan, 1994) p. 5.Google Scholar
99.Vel, L., Demazeau, G., and Etourneau, J., Mater. Sci. Eng., B 10 (1991) p. 149.Google Scholar
100.Nakahara, M., Yamaguchi, T., and Ohtaki, H., Recent Res. Devel. Phys. Chem. 1 (1997) p. 17.Google Scholar
101.Tester, J.W., Holgate, H.R., Armellini, F.J., Webley, P.A., Killilea, W.R., Hong, G.T., and Barner, H.E., in ACS Symp. Ser. 518 (American Chemical Society, Washington, DC, 1993) p. 35.Google Scholar
102.Shaw, R.W., Brill, T.B., Clifford, A.A., Eckert, C.A., and Franck, E.U., Chem. Eng. News 69 (1991) p. 26.Google Scholar
103.Lev, O., Wu, Z., Bharathi, S., Glezer, V., Modestov, A., Gun, J., Rabinovich, L., and Sampath, S., Chem. Mater. 9 (1997) p. 2354.Google Scholar
104.Klein, L., ed., Sol-Gel Optics: Processing and Applications (Kluwer Academic Publishers, Boston, 1994).Google Scholar
105.Kakihana, M., J. Sol.-Gel Sci. Technol. 6 (1996) p. 7.Google Scholar
106.Kakihana, M. and Yoshimura, M., Bull. Chem. Soc. Jpn. 72 (1999) p. 1427.CrossRefGoogle Scholar
107.Klein, L., ed., Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics, and Specialty Shapes (Noyes Publications, Park Ridge, NJ, 1988).Google Scholar
108.Ono, S. and Hirano, S.-I., J. Am. Ceram. Soc. 80 (1997) p. 2533.Google Scholar
109.Service, R.F., Science 278 (1997) p. 383.Google Scholar
110.Mestecky, P., Mater. Today 1 (1998) p. 8.Google Scholar
111.Feynman, R., 1960, cited by Appenzeller, T., Science 254 (1991) p. 1300.Google Scholar
112.Yoshimura, M., Mater. Integration 13 (2000) (in Japanese) p. 3.Google Scholar
113.Suchanek, W.L., Watanabe, T., Sakurai, B., Kumagai, N., and Yoshimura, M., Rev. Sci. Instrum. 70 (1999) p. 2432.Google Scholar