Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T07:21:54.808Z Has data issue: false hasContentIssue false

Smart Materials with Dynamically Controllable Surfaces

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Recent progress in various biotechnology fields, such as microfluidics, tissue engineering, and cellular biology, has created a great demand for substrates that can undergo defined remodeling with time. As a result, the latest research on materials with dynamically controllable surface properties has led to a variety of novel smart surface designs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Saltzman, W.M., in Principles of Tissue Engineering, 2nd Ed. (Academic Press, San Diego, 2000) p. 221.CrossRefGoogle Scholar
2.Giancotti, F.G. and Ruoslahti, E., Science 285 (1999) p. 1028.CrossRefGoogle Scholar
3.Abbott, N., Gorman, C., and Whitesides, G., Langmuir 11 (1995) p.16.CrossRefGoogle Scholar
4.Sondag-Huethorst, J.A.M. and Fokkink, L.G.J., Langmuir 10 (1994) p. 4380.CrossRefGoogle Scholar
5.Abbott, N. and Whitesides, G., Langmuir 10 (1994) p. 1493.CrossRefGoogle Scholar
6.Yousaf, M., Houseman, B., and Mrksich, M., Proc. Nat. Acad. Sci. USA 98 (2001) p. 5992.CrossRefGoogle Scholar
7.Yousaf, M., Houseman, B., and Mrksich, M., Angew. Chem. Int. Ed. 40 (2001) p. 1093.3.0.CO;2-Q>CrossRefGoogle Scholar
8.Yeo, W., Yousaf, M., and Mrksich, M., J. Am. Chem. Soc. 125 (2003) p. 14994.CrossRefGoogle Scholar
9.Hodneland, C. and Mrksich, M., Langmuir 13 (1997) p. 6001.CrossRefGoogle Scholar
10.Dillmore, W., Yousaf, M., and Mrksich, M., Langmuir 20 (2004) p. 7223.CrossRefGoogle Scholar
11.Jiang, X., Ferrigno, R., Mrksich, M., and Whitesides, G., J. Am. Chem. Soc. 125 (2003) p. 2366.CrossRefGoogle Scholar
12.Katz, E., Lioubashevsky, O., and Willner, I., J. Am Chem. Soc. 126 (2004) p. 15520.CrossRefGoogle Scholar
13.Shin, J.Y. and Abbott, N.L., Langmuir 15 (1999) p. 4404.CrossRefGoogle Scholar
14.Abbott, S., Ralston, J., Reynolds, G., and Hayes, R., Langmuir 15 (1999) p. 8923.CrossRefGoogle Scholar
15.Ichimura, K., Oh, S., and Nakagawa, M., Science 288 (2000) p. 1624.CrossRefGoogle Scholar
16.Bunker, B.C., Kim, B.I., Houston, J.E., Rosario, R., Garcia, A.A., Hayes, M., Gust, D., and Picraux, S.T., Nano Lett. 3 (2003) p. 1723.CrossRefGoogle Scholar
17.Russell, T.P., Science 297 (2002) p. 964.CrossRefGoogle Scholar
18.Nath, N. and Chilkoti, A., J. Am. Chem. Soc. 123 (2001) p. 8197.CrossRefGoogle Scholar
19.Gallardo, B.S., Gupta, V.K., Eagerton, F.D., Jong, L.I., Craig, V.S., Shah, R.R., and Abbott, N.L., Science 283 (1999) p. 57.CrossRefGoogle Scholar
20.Wilson, M.D. and Whitesides, G.M., J. Am. Chem. Soc. 110 (1988) p. 8718.CrossRefGoogle Scholar
21.Crevoisier, G., Fabre, P., Corpart, J., and Leibler, L., Science 285 (1999) p. 1246.CrossRefGoogle Scholar
22.Matthews, J., Tuncel, D., Jacobs, R.M., Bain, C.D., and Anderson, H.L., J. Am. Chem. Soc. 125 (2003) p. 6428.CrossRefGoogle Scholar
23.Okano, T., Kikuchi, A., Sakurai, Y., Takei, Y., and Ogata, N., J. Controlled Release 36 (1995) p. 125.CrossRefGoogle Scholar
24.Takei, Y.G., Aoki, T., Sanui, K., Ogata, N., Sakurai, Y., and Okano, T., Macromolecules 27 (1994) p. 6163.Google Scholar
25.Akiyama, Y., Kikuchi, A., Yamato, M., and Okano, T., Langmuir 20 (2004) p. 5506.CrossRefGoogle Scholar
26.Luzinov, I., Minko, S., and Tsukruk, V., Prog. Polym. Sci. 29 (2004) p. 635.CrossRefGoogle Scholar
27.LaVan, D., McGuire, T., and Langer, R., Nature Biotechnol. 21 (2003) p. 1184.CrossRefGoogle Scholar
28.Yang, H., Choi, C.A., Chung, K.H., Jun, C.-H., and Kim, Y.T., Anal. Chem. 76 (2004) p. 1537.CrossRefGoogle Scholar
29.Cheng, X., Wang, Y., Hanein, Y., Boehringer, K., and Ratner, B., J. Biomed. Mater. Res. 70A (2004) p. 159.CrossRefGoogle Scholar
30.Huber, D., Manginell, R., Samara, M., Kim, B., and Bunker, B., Science 301 (2003) p. 352.CrossRefGoogle Scholar
31.DeGennes, P.G., Rev. Mod. Phys. 57 (1985) p. 827.CrossRefGoogle Scholar
32.Marmur, A., Langmuir 20 (2004) p. 3517.CrossRefGoogle Scholar
33.Blossey, R., Nature Mater. 2 (2003) p. 301.CrossRefGoogle Scholar
34.Sun, T., Wang, G., Feng, L., Liu, B., Ma, Y., Jiang, L., and Zhu, D., Angew. Chem. Int. Ed. 43 (2004) p. 357.CrossRefGoogle Scholar
35.Fu, Q., Rao, G.V.R., Basame, S.B., Keller, D.J., Artyushkova, K., Fulghum, J.E., and López, G.P., J. Am. Chem. Soc. 126 (2004) p. 8904.CrossRefGoogle Scholar
36.Zhu, X., Mills, K.L., Peters, P.R., Bahng, J.H., Liu, E.H., Shim, J., Naruse, K., Csete, M.E., Thouless, M.D., and Takayama, S., Nature Mater. (2005) accepted.Google Scholar
37.McBeath, R., Pirone, D.M., Nelson, C.M., Bhadriraju, K., and Chen, C.S., Dev. Cell. 6 (2004) p. 483.CrossRefGoogle ScholarPubMed
38.Lahann, J., Mitragotri, S., Tran, T.N., Kaido, H., Sundaram, J., Choi, I.S., Hoffer, S., Somorjai, G.A., and Langer, R., Science 299 (2003) p. 371.CrossRefGoogle Scholar
39.Schreiber, F., J. Phys. Cond. Matter 16 (2004) p. R881.CrossRefGoogle Scholar
40.Liu, Y., Mu, L., Liu, B., Zhang, S., Yang, P., and Kong, J., Chem. Commun. 10 (2004) p. 1194.CrossRefGoogle Scholar
41.Wang, X., Kharitonov, A., Katz, E., and Willner, I., Chem. Commun. 9 (2003) p. 1542.CrossRefGoogle Scholar
42.Wang, X., Katz, E., and Willner, I., Electrochem. Commun. 5 (2003) p. 814.CrossRefGoogle Scholar
43.Shimazu, K., Kawaguchi, T., and Isomura, T., J. Am. Chem. Soc. 124 (2002) p. 652.CrossRefGoogle Scholar
44.Langer, R. and Tirrell, D., Nature 428 (2004) p. 487.CrossRefGoogle Scholar