Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T22:58:14.386Z Has data issue: false hasContentIssue false

Simulation of Nanometer-Scale Deformation of Metallic and Ceramic Surfaces

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The precision machining of metal surfaces and the ductile-regime grinding of ceramic surfaces are examples of fundamental cutting processes used in fabricating high-tolerance parts. Components with dimensional tolerances of a few tens of nanometers are currently being produced by direct machining with single-point diamond tools. Despite the ability to fabricate these parts, little is understood of the basic deformation mechanisms that determine how material is removed and deformed, how a tool-tip interacts with a workpiece, how induced surface and subsurface damage occurs, and how cutting tools wear.

The key to solving these problems is a fundamental understanding of basic tribological processes such as surface indentation and scraping. Indentation experiments measure the mechanical response of a surface, the onset of plastic deformation, and material hardness. Macroscopic hardness measurements have been shown to correlate well with observed tensile yield strengths. Microscopic indentation studies, where the indentation size is smaller than the material grain size, show new and interesting phenomena. In the pioneering work of Gane and Bowden, no permanent penetration occurred until a critical load was achieved. They related this critical yielding to the theoretical shear strength in the metal, the strength required to create dislocations. Yielding of this sort has since been observed by many investigators.

Type
Nanotribology
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Tabor, D., The Hardness of Metals (Oxford University Press, Oxford, 1951).Google Scholar
2.Gane, N. and Bowden, F.P., J. Appl. Phys. 39 (1968) p. 1432.CrossRefGoogle Scholar
3.Microindentation Techniques in Materials Science and Engineering, edited by Blau, P.J. and Lawn, B.R., ASTM Special Technical Publication 889 (ASTM, Philadelphia, 1986).Google Scholar
4.Chen, C.C. and Hendrickson, A.A., J, Appl. Phys. 42 (1971) p. 2208.CrossRefGoogle Scholar
5.Pharr, G.M. and Oliver, W.C., J. Mater. Res. 4 (1989) p. 94.CrossRefGoogle Scholar
6.Burnham, N.A., Colton, R.J., and Pollock, H.M., J. Vac. Sci. Technol. A 9 (1991) p. 2548.CrossRefGoogle Scholar
7.Salmeron, M., Folch, A., Neubauer, G., Tomitori, M., and Ogletree, D.F., Langmuir 8 (1992) p. 2832.CrossRefGoogle Scholar
8.Mate, C.M., McClelland, G.M., Erlandsson, R., and Chiang, S., Phys. Rev. Lett. 59 (1987) p. 1942.CrossRefGoogle Scholar
9.Mate, C.M., Phys. Rev. Lett. 68 (1992) p. 3323.CrossRefGoogle Scholar
10.Meyer, E., Overney, R., Brodbeck, D., Howard, L., Luthi, R., Frommer, J., and Güntherodt, H-J., Phys. Rev. Lett. 69 (1992) p. 1777.CrossRefGoogle Scholar
11.Landman, U., Luedtke, W.D., Burnham, N.A., and Colton, R.J., Science 248 (1990) p. 454; U. Landman and W.D. Luedtke, J. Vac. Sci. Technol. B 9 (1991) p. 414; and W.D. Luedtke and U. Landman, Comput. Mat. Sci. 1 (1992) p. 1.CrossRefGoogle Scholar
12.Pethica, J.B. and Sutton, A.P., J. Vac. Sci. Technol. A 6 (1988) p. 2490.CrossRefGoogle Scholar
13.Smith, J.R., Bozzolo, G., Banerjea, A., and Ferrante, J., Phys. Rev. Lett. 63 (1989) p. 1269.CrossRefGoogle Scholar
14.Thompson, P.A. and Robbins, M.O., Science 250 (1990) p. 792; P.A. Thompson and M.O. Robbins, Phys. Ren Lett. 68 (1992) p. 3448.CrossRefGoogle Scholar
15.Harrison, J.A., White, C.T., Colton, R.J., and Brenner, D.W., Phys. Rev. B 46 (1992) p. 9700.CrossRefGoogle Scholar
16.Belak, J. and Stowers, I.F., Proc. ASPE Annu. Conf., Rochester (1990) p. 76; I.F. Stowers, J. Belak, D.A. Lucca, R. Komanduri, R.L. Rhorer, T. Moriwaki, K. Okuda, N. Ikawa, S. Shimada, H. Tanaka, T.A. Dow, and J.D. Drescher, Proc. ASPE Annu. Conf. (1991) p. 100.Google Scholar
17.Belak, J. and Stowers, I.F., NATO ASI Proceedings, Fundamentals of Friction, edited by Singer, I.L. and Pollock, H.M. (Kluwer, Dordrecht, 1992) p. 511.Google Scholar
18.Boercker, D.B., Belak, J., Stowers, I.F., Donaldson, R.R., and Siekhaus, W.J., Proc. ASPE Annu. Conf. (1992) p. 45.Google Scholar
19. For a recent review, see Allen, M.P. and Tildesley, D.J., Computer Simulation of Liquids (Clarendon Press, Oxford, 1987).Google Scholar
20.Daw, M.S. and Baskes, M.I., Phys. Rev. B 29 (1984) p. 6443.CrossRefGoogle Scholar
21.Oh, D.J. and Johnson, R.A., in Atomistic Simulation of Materials: Beyond Pair Potentials, edited by Vitek, V. and Srolovitz, D.J. (Plenum Press, New York, 1989) p. 233.CrossRefGoogle Scholar
22.Tersoff, J., Phys. Rev. B 37 (1988) p. 6991.CrossRefGoogle Scholar
23.Hoover, W.G., Phys. Rev. A 31 (1985) p. 1695.CrossRefGoogle Scholar
24.Hull, D. and Bacon, D.J., Introduction to Dislocations, 3rd. ed. (Pergamon Press, Oxford, 1984).Google Scholar
25. For an introduction to metal cutting, see Shaw, M.C., Metal Cutting Principles (Oxford University Press, Oxford, 1984).Google Scholar
26.Moriwaki, T. and Okuda, K., Ann. CIRP 38/1 (1989) p. 115.CrossRefGoogle Scholar
27.Lucca, D.A., Rhorer, R.L., and Komanduri, R., Proc. ASPE Annu. Conf. (1990) p. 51.Google Scholar
28.Ikawa, N., Shimada, S., Tanaka, H., and Ohmori, G., Ann. CIRP 40/1 (1991) p. 551.CrossRefGoogle Scholar
29.Drescher, J.D. and Dow, T.A., Precision Engin. 1 (1990) p. 29.CrossRefGoogle Scholar
30.Backer, W.R., Marshall, E.R., and Shaw, M.C., Trans. ASME 74 (1952) p. 61.Google Scholar
31.Clarke, D.R., Kroll, M.C., Kirchner, P.D., Cook, R.F., and Hockey, B.J., Phys. Rev. Lett. 60 (1988) p. 2156.CrossRefGoogle Scholar
32.Pharr, G.M., Oliver, W.C., and Harding, D.S., J. Mater. Res. 6 (1991) p. 1129.CrossRefGoogle Scholar
33.Minowa, K. and Sumino, K., Phys. Rev. Lett. 69 (1992) p. 320.CrossRefGoogle Scholar