Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T07:55:00.493Z Has data issue: false hasContentIssue false

Shape-Controlled Synthesis of Silver and Gold Nanostructures

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

This article provides a brief account of solution-phase methods that generate silver and gold nanostructures with well-controlled shapes. It is organized into five sections: The first section discusses the nucleation and formation of seeds from which nanostructures grow. The next two sections explain how seeds with fairly isotropic shapes can grow anisotropically into distinct morphologies. Polyol synthesis is selected as an example to illustrate this concept. Specifically, we discuss the growth of silver nanocubes (with and without truncated corners), nanowires, and triangular nanoplates. In the fourth section, we show that silver nanostructures can be transformed into hollow gold nanostructures through a galvanic replacement reaction. Examples include nanoboxes, nanocages, nanotubes (both single- and multi-walled), and nanorattles. The fifth section briefly outlines a potential medical application for gold nanocages.We conclude with some perspectives on areas for future work.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Xia, Y., Yang, P., Sun, Y., Wu, Y., Gate, B., Yin, Y., Kim, F., and Yan, H., Adv. Mater. 15 (2003) p. 353.CrossRefGoogle Scholar
2.Jana, N.R., Gearheart, L., Obare, S.O., and Murphy, C.J., Langmuir 18 (2002) p. 922.CrossRefGoogle Scholar
3.Kottmann, J.P., Martin, O.J.F., Smith, D.R., and Schultz, S., Phys. Rev. B 64 235402 (2001).CrossRefGoogle Scholar
4.Wang, Z.L., Ahmad, T.S., El-Sayed, M.A., Surf. Sci. 380 (1997) p. 302.CrossRefGoogle Scholar
5.Chimentão, R.J., Kirm, I., Medina, F., Rodríguez, X., Cesteros, Y., Salagre, P., and Sueiras, J.E., Chem. Commun. 7 (2004) p. 846.CrossRefGoogle Scholar
6.Kovtyukhova, N.I. and Mallouk, T.E., Chem. Eur. J. 8 (2002) p. 4354.3.0.CO;2-1>CrossRefGoogle Scholar
7.Dick, L.A., McFarland, A.D., Haynes, C.L., and Van Duyne, R.P., J. Phys. Chem. B 106 (2002) p. 853.CrossRefGoogle Scholar
8.Kreibig, U. and Vollmer, M., Optical Properties of Metal Clusters (Springer-Verlag, New York, 1995).CrossRefGoogle Scholar
9.Gans, R., Ann. Phys. 47 (1915) p. 270.CrossRefGoogle Scholar
10.Kelly, K.L., Coronado, D., Zhao, L.L., and Schatz, G.C., J. Phys. Chem. B 107 (2003) p. 668.CrossRefGoogle Scholar
11.Jin, R., Cao, Y., Mirkin, C.A., Kelly, K.L., Schatz, G.C., and Zheng, J.G., Science 294 (2001) p. 1901.CrossRefGoogle Scholar
12.Hirsch, L., Stafford, R., Bankson, J., Sershen, S., Rivera, B., Price, R., Hazle, J., Halas, N., and West, J.., Proc. Natl. Acad. Sci. U.S.A. 100 (2003) p. 13549.CrossRefGoogle Scholar
13.Wiley, B., Herricks, T., Sun, Y., and Xia, Y., Nano Lett. 4 (2004) p. 1733.CrossRefGoogle Scholar
14.Pileni, M.P., Nature Mater. 2 (2003) p. 145.CrossRefGoogle Scholar
15.Wiley, B., Sun, Y., Mayers, B., and Xia, Y., Chem. Eur. J. 11 (2005) p. 454.CrossRefGoogle Scholar
16.Hollingsworth, M.D., Science 295 (2002) p. 2419.CrossRefGoogle Scholar
17.Henglein, A., Chem. Phys. Lett. 154 (1989) p. 473.CrossRefGoogle Scholar
18.Belloni, J., Mostafavi, M., Remita, H., Marignier, J.L., and Delcourt, M.O., New J. Chem. 22 (1998) p. 1239.CrossRefGoogle Scholar
19.Zhang, J.M., Ma, F., and Xu, K.W., App. Surf. Sci. 229 (2004) p. 34.CrossRefGoogle Scholar
20.Wang, Z.L., J. Phys. Chem. B 104 (2000) p. 1153.CrossRefGoogle Scholar
21.Ajayan, P.M. and Marks, L.D., Phys. Rev. Lett. 60 (1988) p. 585.CrossRefGoogle Scholar
22.Smith, D.J., Petford-Long, A.K., Wallenberg, L.R., and Bovin, J.O., Science 233 (1986) p. 872.CrossRefGoogle ScholarPubMed
23.Henglein, A., Linner, T., and Mulvaney, P., Berichte der Bunsen-Gesellschaft 94 (1990) p. 1449.CrossRefGoogle Scholar
24.Fiévet, F., Lagier, J.P., and Figlarz, M., Mater. Res. Soc. Bull. 24 (1989) p. 29.CrossRefGoogle Scholar
25.Bonet, F., Tekaia-Elhsissen, K., and Sarathy, K.V., Bull. Mater. Sci. 23 (2000) p. 165.CrossRefGoogle Scholar
26.Zhang, Z., Zhao, B., and Hu, L., J. Solid State Chem. 121 (1996) p. 105.CrossRefGoogle Scholar
27.Huang, H.H., Ni, X.P., Loy, G.L., Chew, C.H., Tan, K.L., Loh, F.C., Deng, J.F., and Xu, G.Q., Langmuir 12 (1996) p. 909.CrossRefGoogle Scholar
28.Gao, Y., Jiang, P., Liu, D.F., Yuan, H.J., Yan, X.Q., Zhou, Z.P., Wang, J.X., Song, L., Liu, L.F., Zhou, W.Y., Wang, G., Wang, C.Y., Xie, S.S., Zhang, J.M., and Shen, D.Y., J. Phys. Chem. B 108 (2004) p. 12877.CrossRefGoogle Scholar
29.Sun, Y., Mayers, B., Herricks, T., and Xia, Y., Nano Lett. 3 (2003) p. 955.CrossRefGoogle Scholar
30.Sun, Y. and Xia, Y., Science 298 (2002) p. 2176.CrossRefGoogle Scholar
31.Sun, Y., Gates, B., Mayers, B., and Xia, Y., Nano Lett. 2 (2002) p. 165.CrossRefGoogle Scholar
32.Sun, Y., Yin, Y., Mayers, B., Herricks, T., and Xia, Y., Chem. Mater. 14 (2002) p. 4736.CrossRefGoogle Scholar
33.Sun, Y. and Xia, Y., Adv. Mater. 14 (2002) p. 833.3.0.CO;2-K>CrossRefGoogle Scholar
34.Marks, L.D., Philos. Mag. A 49 (1984) p. 81.CrossRefGoogle Scholar
35.Petroski, J.M., Wang, Z.L., Green, T.C., and El-Sayed, M.A., J. Phys. Chem. B 102 (1998) p. 3316.CrossRefGoogle Scholar
36.Kim, F., Connor, S., Song, H., Kuykendall, T., and Yang, P., Angew. Chem. Int. Ed. 43 (2004) p. 3673.CrossRefGoogle Scholar
37.Jin, R., Cao, Y.C., Hao, E., Metraux, G.S., Schatz, G.C., and Mirkin, C.A., Nature 425 (2003) p. 487.CrossRefGoogle Scholar
38.Sun, Y., Mayers, B.T., and Xia, Y., Nano Lett. 2 (2002) p. 481.CrossRefGoogle Scholar
39.Sun, Y., Mayers, B., and Xia, Y., Adv. Mater. 15 (2003) p. 641.CrossRefGoogle Scholar
40.Kirkland, A.I., Jefferson, D.A., Duff, D.G., Edwards, P.P., Gameson, I., Johnson, B.F.G., and Smith, D.J., Proc. R. Soc. London, Series A 440 (1993) p. 589.Google Scholar
41.Germain, V., Li, J., Ingert, D., Wang, Z.L., and Pileni, M.P., Phys. Chem. B 107 (2003) p. 8717.CrossRefGoogle Scholar
42.Hao, E., Bailey, R., Schatz, G., Hupp, J.T., and Li, S., Nano Lett. 4 (2004) p. 327.CrossRefGoogle Scholar
43.Jana, N.R., Gearheart, L., and Murphy, C.J., Adv. Mater. 13 (2001) p. 1389.3.0.CO;2-F>CrossRefGoogle Scholar
44.Chen, S. and Carroll, D.L., Nano Lett. 2 (2002) p. 1003.CrossRefGoogle Scholar
45.Chen, S., Fan, Z., and Carroll, D.L., J. Phys. Chem. B 106 (2002) p. 10777.CrossRefGoogle Scholar
46.Maillard, M., Giorgio, S., and Pileni, M.-P., Adv. Mater. 14 (2002) p. 1084.3.0.CO;2-L>CrossRefGoogle Scholar
47.Yener, D.O., Sindel, J., Randall, C.A., and Adair, J.H., Langmuir 18 (2002) p. 8692.CrossRefGoogle Scholar
48.Ibano, D., Yokota, Y., and Tominaga, T., Chem. Lett. 32 (2003) p. 574.CrossRefGoogle Scholar
49.Sau, T.K. and Murphy, C.J., J. Am. Chem. Soc. 126 (2004) p. 8648.CrossRefGoogle Scholar
50.Zhang, Y., Liu, B., Liu, J., Zhou, H., Xu, Y., Jiang, Y., Yang, Z., and Tian, Z.Q., J. Am. Chem. Soc. 126 (2004) p. 9470.Google Scholar
51.Sun, Y., Mayers, B., and Xia, Y., Adv. Mater. 15 (2003) p. 64.Google Scholar
52.Sun, Y. and Xia, Y., J. Am. Chem. Soc. 126 (2004) p. 3892.CrossRefGoogle Scholar
53.Sun, Y., Mayers, B.T., and Xia, Y., Nano Lett. 2 (2002) p. 481.CrossRefGoogle Scholar
54.Sun, Y., Mayers, B.T., and Xia, Y., Nano Lett. 3 (2003) p. 1569.CrossRefGoogle Scholar
55.Sun, Y. and Xia, Y., Adv. Mater. 16 (2004) p. 264.CrossRefGoogle Scholar
56.Sun, Y., Wiley, B., Li, Z.Y., and Xia, Y., J. Am. Chem. Soc. 126 (2004) p. 9399.CrossRefGoogle Scholar
57.Fujimoto, J.G., Nat. Biotechnol. 21 (2003) 1361.CrossRefGoogle Scholar
58.Chen, J., Saeki, F., Wiley, B.J., Cang, H., Cobb, M.J., Li, Z.-Y., Au, L., Zhang, H., Kimmey, M.B., Li, X., and Xia, Y., Nano Lett. 5 (2005) p. 473.CrossRefGoogle Scholar
59.Moolhuizen, G., Faciotti, G.F., de Leede, L.G.J., and Tamarkin, L., Business Briefing: Parmatech (2004) p. 1.Google Scholar