Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T08:22:19.406Z Has data issue: false hasContentIssue false

Semiconductor Quantum Dots

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Semiconductor “quantum dots” refer to nanometer-sized, giant (103–105 atoms) molecules made from ordinary inorganic semiconductor materials such as Si, InP, CdSe, etc. They are larger than the traditional “molecular clusters” (~1 nanometer containing ≤100 atoms) common in chemistry yet smaller than the structures of the order of a micron, manufactured by current electronic-industry lithographic techniques. Quantum dots can be made by colloidal chemistry techniques (see the articles by Alivisatos and by Nozik and Mićić in this issue), by controlled coarsening during epitaxial growth (see the article by Bimberg et al. in this issue), by size fluctuations in conventional quantum wells (see the article by Gammon in this issue), or via nano-fabrication (see the article by Tarucha in this issue).

Type
Semiconductor Quantum Dots
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)