Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T16:42:06.482Z Has data issue: false hasContentIssue false

Semiconductor nanowires: A platform for nanoscience and nanotechnology

Published online by Cambridge University Press:  14 December 2011

Charles M. Lieber*
Affiliation:
School of Engineering and Applied Sciences and Department of Chemistry and Chemical Biology, Harvard University; [email protected]
Get access

Abstract

Advances in nanoscience and nanotechnology critically depend on the development of nanostructures whose properties are controlled during synthesis. We focus on this critical concept using semiconductor nanowires, which provide the capability through design and rational synthesis to realize unprecedented structural and functional complexity in building blocks as a platform material. First, a brief review of the synthesis of complex modulated nanowires in which rational design and synthesis can be used to precisely control composition, structure, and, most recently, structural topology is discussed. Second, the unique functional characteristics emerging from our exquisite control of nanowire materials are illustrated using several selected examples from nanoelectronics and nano-enabled energy. Finally, the remarkable power of nanowire building blocks is further highlighted through their capability to create unprecedented, active electronic interfaces with biological systems. Recent work pushing the limits of both multiplexed extracellular recording at the single-cell level and the first examples of intracellular recording is described, as well as the prospects for truly blurring the distinction between nonliving nanoelectronic and living biological systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Lieber, C.M., Morales, A.M., Sheehan, P.E., Wong, E.W., Yang, P., Proceedings of the Robert A. Welch Foundation 40th Conference on Chemical Research: Chemistry on the Nanometer Scale (Robert A. Welch Foundation, 1997), pp. 165187.Google Scholar
2.Morales, A.M., Lieber, C.M., Science 279, 208 (1998).CrossRefGoogle Scholar
3.Hu, J., Ouyang, M., Yang, P., Lieber, C.M., Nature 399, 48 (1999).CrossRefGoogle Scholar
4.Duan, X., Lieber, C.M., J. Am. Chem. Soc. 122, 188 (2000).CrossRefGoogle Scholar
5.Duan, X., Wang, J., Lieber, C.M., Appl. Phys. Lett. 76, 1116 (2000).CrossRefGoogle Scholar
6.Wei, Q., Lieber, C.M., Mater. Res. Soc. Symp. Proc. 581, 219 (2000).CrossRefGoogle Scholar
7.Cui, Y., Duan, X., Hu, J., Lieber, C.M., J. Phys. Chem. B 104, 5213 (2000).CrossRefGoogle Scholar
8.Gudiksen, M.S., Lieber, C.M., J. Am. Chem. Soc. 122, 8801 (2000).CrossRefGoogle Scholar
9.Duan, X., Huang, Y., Cui, Y., Wang, J., Lieber, C.M., Nature 409, 66 (2001).CrossRefGoogle Scholar
10.Cui, Y., Lieber, C.M., Science 291, 851 (2001).CrossRefGoogle Scholar
11.Cui, Y., Lauhon, L.J., Gudiksen, M.S., Wang, J., Lieber, C.M., Appl. Phys. Lett. 78, 2216 (2001).CrossRefGoogle Scholar
12.Gudiksen, M.S., Wang, J., Lieber, C.M., J. Phys. Chem. B 105, 4062 (2001).CrossRefGoogle Scholar
13.Gudiksen, M.S., Lauhon, L.J., Wang, J., Smith, D., Lieber, C.M., Nature 415, 617 (2002).CrossRefGoogle Scholar
14.Huang, Y., Duan, X., Cui, Y., Lieber, C.M., Nano Lett. 2, 101 (2002).CrossRefGoogle Scholar
15.Lauhon, L.J., Gudiksen, M.S., Wang, D., Lieber, C.M., Nature 420, 57 (2002).CrossRefGoogle Scholar
16.Zhong, Z., Qian, F., Wang, D., Lieber, C.M., Nano Lett. 3, 343 (2003).CrossRefGoogle Scholar
17.Wang, D., Lieber, C.M., Nat. Mater. 2, 355 (2003).CrossRefGoogle Scholar
18.Barrelet, C.J., Wu, Y., Bell, D.C., Lieber, C.M., J. Am. Chem. Soc. 125, 11498 (2003).CrossRefGoogle Scholar
19.Wu, Y., Cui, Y., Huynh, L., Barrelet, C.J., Bell, D.C., Lieber, C.M., Nano Lett. 4, 433 (2004).CrossRefGoogle Scholar
20.Wang, D., Qian, F., Yang, C., Zhong, Z., Lieber, C.M., Nano Lett. 4, 871 (2004).CrossRefGoogle Scholar
21.Greytak, A.B., Lauhon, L.J., Gudiksen, M.S., Lieber, C.M., Appl. Phys. Lett. 84, 4176 (2004).CrossRefGoogle Scholar
22.Wu, Y., Xiang, J., Yang, C., Lu, W., Lieber, C.M., Nature 430, 61 (2004).CrossRefGoogle Scholar
23.Qian, F., Li, Y., Gradečak, S., Wang, D., Barrelet, C.J., Lieber, C.M., Nano Lett. 4, 1975 (2004).CrossRefGoogle Scholar
24.Zheng, G., Lu, W., Jin, S., Lieber, C.M., Adv. Mater. 16, 1890 (2004).CrossRefGoogle Scholar
25.Lu, W., Xiang, J., Timko, B.P., Wu, Y., Lieber, C.M., Proc. Natl. Acad. Sci. U.S.A. 102, 10046 (2005).CrossRefGoogle Scholar
26.Radovanovic, P.V., Barrelet, C.J., Gradečak, S., Qian, F., Lieber, C.M., Nano Lett. 5, 1407 (2005).CrossRefGoogle Scholar
27.Qian, F., Gradečak, S., Li, Y., Wen, C., Lieber, C.M., Nano Lett. 5, 2287 (2005).CrossRefGoogle Scholar
28.Yang, C., Zhong, Z., Lieber, C.M., Science 310, 1304 (2005).CrossRefGoogle Scholar
29.Li, Y., Xiang, J., Qian, F., Gradečak, S., Wu, Y., Yan, H., Blom, D.A., Lieber, C.M., Nano Lett. 6, 1468 (2006).CrossRefGoogle Scholar
30.Park, W.I., Zheng, G., Jiang, X., Tian, B., Lieber, C.M., Nano Lett. 8, 3004 (2008).CrossRefGoogle Scholar
31.Qian, F., Li, Y., Gradečak, S., Park, H.-G., Dong, Y., Ding, Y., Wang, Z.L., Lieber, C.M., Nat. Mater. 7, 701 (2008).CrossRefGoogle Scholar
32.Xie, P., Hu, Y., Fang, Y., Huang, J., Lieber, C.M., Proc. Natl. Acad. Sci. U.S.A. 106, 15254 (2009).CrossRefGoogle Scholar
33.Tian, B., Xie, P., Kempa, T.J., Bell, D.C., Lieber, C.M., Nat. Nanotechnol. 4, 824 (2009).CrossRefGoogle Scholar
34.Jiang, X., Tian, B., Xiang, J., Qian, F., Zheng, G., Wang, H., Mai, L., Lieber, C.M., Proc. Natl. Acad. Sci. U.S.A., 108(30), 12212 (2011).CrossRefGoogle Scholar
35.Yang, C., Barrelet, C.J., Capasso, F., Lieber, C.M., Nano Lett. 6, 2929 (2006).CrossRefGoogle Scholar
36.Tian, B., Zheng, X., Kempa, T.J., Fang, Y., Yu, N., Yu, G., Huang, J., Lieber, C.M., Nature 449, 885 (2007).CrossRefGoogle Scholar
37.Kempa, T.J., Tian, B., Kim, D.R., Hu, J., Zheng, X., Lieber, C.M., Nano Lett. 8, 3456 (2008).CrossRefGoogle Scholar
38.Tian, B., Kempa, T.J., Lieber, C.M., Chem. Soc. Rev. 38, 16 (2009).CrossRefGoogle Scholar
39.Dong, Y., Tian, B., Kempa, T., Lieber, C.M., Nano Lett. 9, 2183 (2009).CrossRefGoogle Scholar
40.Cui, Y., Wei, Q., Park, H., Lieber, C.M., Science 293, 1289 (2001).CrossRefGoogle Scholar
41.Hahm, J., Lieber, C.M., Nano Lett. 4, 51 (2004).CrossRefGoogle Scholar
42.Patolsky, F., Zheng, G., Hayden, O., Lakadamyali, M., Zhuang, X., Lieber, C.M., Proc. Natl. Acad. Sci. U.S.A. 101, 14017 (2004).CrossRefGoogle Scholar
43.Wang, W.U., Chen, C., Lin, K., Fang, Y., Lieber, C.M., Proc. Natl. Acad. Sci. U.S.A. 102, 3208 (2005).CrossRefGoogle Scholar
44.Patolsky, F., Lieber, C.M., Mater. Today 8, 20 (2005).CrossRefGoogle Scholar
45.Zheng, G., Patolsky, F., Cui, Y., Wang, W.U., Lieber, C.M., Nat. Biotechnol. 23, 1294 (2005).CrossRefGoogle Scholar
46.Patolsky, F., Zheng, G., Lieber, C.M., Nanomedicine 1, 51 (2006).CrossRefGoogle Scholar
47.Patolsky, F., Timko, B.P., Yu, G., Fang, Y., Greytak, A.B., Zheng, G., Lieber, C.M., Science 313, 1100 (2006).CrossRefGoogle Scholar
48.Patolsky, F., Timko, B.P., Zheng, G., Lieber, C.M., MRS Bull. 32, 142 (2007).CrossRefGoogle Scholar
49.Timko, B.P., Cohen-Karni, T., Yu, G., Qing, Q., Tian, B., Lieber, C.M., Nano Lett. 9, 914 (2009).CrossRefGoogle Scholar
50.Cohen-Karni, T., Timko, B.P., Weiss, L.E., Lieber, C.M., Proc. Natl. Acad. Sci. U.S.A. 106, 7309 (2009).CrossRefGoogle Scholar
51.Gao, X.P., Zheng, G., Lieber, C.M., Nano Lett. 10, 547 (2010).CrossRefGoogle Scholar
52.Qing, Q., Pal, S.K., Tian, B., Duan, X., Timko, B.P., Cohen-Karni, T., Murthy, V.N., Lieber, C.M., Proc. Natl. Acad. Sci. U.S.A. 107, 1882 (2010).CrossRefGoogle Scholar
53.Cohen-Karni, T., Qing, Q., Li, Q., Fang, Y., Lieber, C.M., Nano Lett. 10, 1098 (2010).CrossRefGoogle Scholar
54.Timko, B.P., Cohen-Karni, T., Qing, Q., Tian, B., Lieber, C.M., IEEE Trans. Nanotechnol. 9, 269 (2010).CrossRefGoogle Scholar
55.Zheng, G., Gao, X., Lieber, C.M., Nano Lett. 10, 3179 (2010).CrossRefGoogle Scholar
56.Tian, B., Cohen-Karni, T., Qing, Q., Duan, X., Xie, P., Lieber, C.M., Science 329, 831 (2010).CrossRefGoogle Scholar
57.Murray, C.B., Kagan, C.R., Bawendi, M.G., Annu. Rev. Mater. Sci. 30, 545 (2000).CrossRefGoogle Scholar
58.Cushing, B.L., Kolesnichenko, V.L., O’Connor, C.J., Chem. Rev. 104, 3893 (2004).CrossRefGoogle Scholar
59.Lieber, C.M., Solid State Commun. 107, 607 (1998).CrossRefGoogle Scholar
60.Hu, J., Odom, T.W., Lieber, C.M., Acc. Chem. Res. 32, 435 (1999).CrossRefGoogle Scholar
61.Lieber, C.M., MRS Bull. 28, 486 (2003).CrossRefGoogle Scholar
62.Lauhon, L.J., Gudiksen, M.S., Lieber, C.M., Philos. Trans. R. Soc. London, Ser. A 362, 1247 (2004).CrossRefGoogle Scholar
63.Duan, X., Lieber, C.M., in Dekker Encyclopedia of Nanoscience and Nanotechnology, Schwarz, J.A., Ed. (Marcel Dekker, NY 2005).Google Scholar
64.Li, Y., Qian, F., Xiang, J., Lieber, C.M., Mater. Today 9, 18 (2006).CrossRefGoogle Scholar
65.Lu, W., Lieber, C.M., J. Phys. D: Appl. Phys. 39, R387 (2006).CrossRefGoogle Scholar
66.Lieber, C.M., Wang, Z.L., MRS Bull. 32, 99 (2007).CrossRefGoogle Scholar
67.Lu, W., Lieber, C.M., Nat. Mater. 6, 841 (2007).CrossRefGoogle Scholar
68.Law, M., Goldberger, J., Yang, P., Annu. Rev. Mater. Res. 34, 83 (2004).CrossRefGoogle Scholar
69.Thelander, C., Agarwal, P., Brongersma, S., Eymery, J., Feiner, L.F., Forchel, A., Scheffler, M., Riess, W., Ohlsson, B.J., Goesele, U., Samuelson, L., Mater. Today 9 (10), 28 (2006).CrossRefGoogle Scholar
70.Wang, Z.L., J. Nanosci. Nanotechnol. 8, 27 (2008).CrossRefGoogle Scholar
71.Dresselhaus, M.S., Annu. Rev. Mater. Sci. 27, 1 (1997).CrossRefGoogle Scholar
72.Baughman, R.H., Zakhidov, A.A., de Heer, W.A., Science 297, 787 (2002).CrossRefGoogle Scholar
73.Geim, A.K., Novoselov, K.S., Nat. Mater. 6, 183 (2007).CrossRefGoogle Scholar
74.Xiang, J., Lu, W., Hu, Y., Wu, Y., Yan, H., Lieber, C.M., Nature 441, 489 (2006).CrossRefGoogle Scholar
75.Xiang, J., Vidan, A., Tinkham, M., Westervelt, R.M., Lieber, C.M., Nat. Nanotechnol. 1, 208 (2006).CrossRefGoogle Scholar
76.Jiang, X., Xiong, Q., Nam, S., Qian, F., Li, Y., Lieber, C.M., Nano Lett. 7, 3214 (2007).CrossRefGoogle Scholar
77.Hu, Y., Churchill, H.O.H., Reilly, D.J., Xiang, J., Lieber, C.M., Marcus, C.M., Nat. Nanotechnol. 2, 622 (2007).CrossRefGoogle Scholar
78.Dong, Y., Yu, G., McAlpine, M.C., Lu, W., Lieber, C.M., Nano Lett. 8, 386 (2008).CrossRefGoogle Scholar
79.Hu, Y., Xiang, J., Liang, G., Yan, H., Lieber, C.M., Nano Lett. 8, 925 (2008).CrossRefGoogle Scholar
80.Chernomordik, L.V., Kozlov, M.M., Nat. Struct. Mol. Biol. 15, 675 (2008).CrossRefGoogle Scholar
81.Claycomb, W.C., Lanson, N.A., Stallworth, B.S., Egeland, D.B., Delcarpio, J.B., Bahinski, A., Izzo, N.J., Proc. Natl. Acad. Sci. U.S.A. 95, 2979 (1998).CrossRefGoogle Scholar
82.Zipes, D.P., Jalife, J., Cardiac Electrophysiology: From Cell to Bedside, 2nd Edition (Saunders, Philadelphia, PA, 2009).Google Scholar