Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-24T08:24:21.008Z Has data issue: false hasContentIssue false

Semiconductor Nanocrystals

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The following is an edited transcript of the presentation given by A. Paul Alivisatos, recipient of the Outstanding Young Investigator Award, at the 1995 MRS Spring Meeting in San Francisco.

The work I will describe on semiconductor nanocrystals started with the realization that it is possible to precipitate a semiconductor out of an organic liquid. We can precipitate out a semiconductor as a colloid—a very small-sized semiconductor with reduced dimensionality—that will show large, quantum size effects. A dream at that time was to make an electronic material by such a process in a liquid beaker, by starting with an organic fluid and somehow injecting something into the fluid to make very small particles, which we could use in electronics. The materials we use in electronics today have perfect crystalline order. We are able to put in dopants very specifically, or control precisely their arrangements in space in enormously complicated ways. The level of purity of electronic materials is so high that making an electronic material in a wet chemistry approach seems almost impossible. If, in addition, we specify that the size must be controlled precisely, we recognize the project is a problem for basic research, yet not one ready for applications. Many fundamental problems arise if we try to make semiconductor particles, in a liquid, of such high quality that they can be used as electronic materials.

Type
Technical Features
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Steigerwald, M.L., Alivisatos, A.P., Gibson, J.M., Harris, T.D., Kortan, R., Muller, A.J., Thayer, A.M., Duncan, T.M., Douglass, D.C., and Brus, L.E., Am. Chem. Soc. 110 (1988) p. 3,046.CrossRefGoogle Scholar
2.Fojtik, A., Weller, H., Koch, U., and Henglein, A., Ber. Biinsenges. Phys. Chem. 88 (1984) p. 969.CrossRefGoogle Scholar
3. Syntheses of Nanocrystals: (a) Murray, C.B., Norris, D.J., and Bawendi, M.G., J. Am. Chem. Soc. 115 (1993) p. 8,706CrossRefGoogle Scholar
(b) Katari, J.B., Colvin, V.L., and Alivisatos, A.P., J. Phys. Chem. 98 (1994) p. 4,109CrossRefGoogle Scholar
(c) Henglein, A., Topics in Current Chemistry (Springer, Berlin, 1988) p. 113Google Scholar
(d) Herron, N., Calabrese, J.C., Farret, W.E., and Wang, Y., Science 259 (1993) p. 1,426.CrossRefGoogle Scholar
4.Burdett, J.K., Prog. Solid St. Chem. 15 (1984) p. 173; S.H. Tolbert and A.P. Alivisatos, J. Chem. Phys. 102 (1995) p. 4,642.CrossRefGoogle Scholar
5.Alivisatos, A.P., Harris, A.L., Levinos, N.J., Steigerwald, M.L., and Brus, L.E., J. Chem. Phys. 89 (1988) p. 4,001; M.G. Bawendi, W.L. Wilson, L. Rothberg, P.J. Carroll, T.M. Jedju, M.L. Steigerwald, and L.E. Brus, Phys. Rev. Lett. 65 (1990) p. 1,623; D.M. Mittleman, R.W. Schoenlein, J.J. Shiang, V.L. Colvin, A.P. Alivisatos, and C.V. Shank, Phys. Rev. B 49 (1994) p. 14,435.CrossRefGoogle Scholar
6.Pickering, C., Beale, M.I.J., Robbins, D.J., Pearson, P.J., and Greef, R., J. Phys. C 17 (1984) p. 6,536; L.T. Canham, Appt. Phys. Lett. 57 (1990) p. 1,046; F. Koch, Mater. Res. Soc. Symp. Proc. 298 (1993) p. 319.Google Scholar
7.Brus, L.E., Szajowski, P.F., Wilson, W.L., Harris, T.D., Schuppler, S., and Citrin, P.H., J. Am. Chem. Soc. 117 (1995) p. 2,915.CrossRefGoogle Scholar
8.Tolbert, S.H., Herhold, A.B., Johnson, C.S., and Alivisatos, A.P., Phys. Rev. Lett. 73 (1994) p. 3,266.CrossRefGoogle Scholar
9.Rossetti, R., Hull, R., Gibson, J.M., and Brus, L.E., J. Chem. Phys. 82 (1985) p. 552; M.G. Bawendi, P.J. Carroll, W.L. Wilson, and L.E. Brus, J. Chem. Phys. 96 p. 946; A. Hallelbarth, A. Eychmüller, and H. Weller, Chem. Phys. Lett. 203 (1993) p. 271; W. Hoheisel, V.L. Colvin, C.S. Johnson, and A.P. Alivisatos, J. Chem. Phys. 101 (1994) p. 8,455.CrossRefGoogle Scholar
10.Colvin, V.L., Schlamp, M.C., and Alivisatos, A.P., Nature 370 (1990) p. 354.CrossRefGoogle Scholar
11.Burroughes, J.H., Bradley, D.D.C., Brown, A.R., Marks, R.N., Mackay, K., Friend, R.H., Burns, P.L., and Holmes, A.B., Nature 347 (1990) p. 539.CrossRefGoogle Scholar
12.Schooss, D., Mews, A., Eychmüller, A., and Weller, H., Phys. Rev. B 49 (1994) p. 17,072.CrossRefGoogle Scholar