Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-02T19:40:05.988Z Has data issue: false hasContentIssue false

Semiconductor materials for x-ray detectors

Published online by Cambridge University Press:  09 June 2017

David Pennicard
Affiliation:
X-Spectrum GmbH, Germany; and Deutsches Elektronen-Synchrotron, Germany; [email protected]
Benoît Pirard
Affiliation:
Mirion Technologies, France; [email protected]
Oleg Tolbanov
Affiliation:
Tomsk State University, Russia; [email protected]
Krzysztof Iniewski
Affiliation:
Redlen Technologies Inc., Canada; [email protected]
Get access

Abstract

Semiconductor x-ray detectors are widely used in experiments at synchrotron facilities. The performance of these detectors depends heavily on the semiconductor material properties. Improvements in crystal growth and device processing are key to developing “high-Z” (high atomic number) semiconductors for hard x-ray detection. Germanium is the most mature high-Z semiconductor and is widely used in x-ray detectors, but it has the drawback of needing to be cooled during operation, often to cryogenic temperatures. Compound semiconductors with wide bandgaps can be used at room temperature, but crystal defects can degrade their performance. Gallium arsenide currently shows poorer energy resolution, but its comparative robustness and stability over time make it a strong option for imaging detectors. Cadmium telluride and cadmium zinc telluride both provide higher detection efficiencies at extreme x-ray energies as well as good energy resolution; the main challenge with these materials is maintaining consistent behavior under a high x-ray flux.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lutz, G., Semiconductor Radiation Detectors—Device Physics (Springer-Verlag Berlin Heidelberg, Heidelberg, Germany, 2007).Google Scholar
Willmott, P., An Introduction to Synchrotron Radiation: Techniques and Applications (Wiley, 2011), doi:10.1002/9781119970958.Google Scholar
Schmitt, B., Brönnimann, C., Eikenberry, E.F., Hülsen, G., Toyokawa, H., Horisberger, R., Gozzo, F., Patterson, B., Schulze-Briese, C., Tomizaki, T.., Nucl. Instrum. Methods Phys. Res. A 518, 436 (2004).CrossRefGoogle Scholar
Ponchut, C., Rigal, J., Clement, J., Papillon, E., Homs, A., Petitdemange, S., J. Instrum. 6, C01069 (2011).CrossRefGoogle Scholar
Berger, M.J., Hubbell, J.H., Seltzer, S.M., Chang, J., Coursey, J.S., Sukumar, R., Zucker, D.S., Olsen, K., NIST Standard Reference Database 8 (XGAM), https://www.nist.gov/pml/xcom-photon-cross-sections-database.Google Scholar
McCluskey, M.D., Haller, E.E., Dopants and Defects in Semiconductors (CRC Press, Boca Raton, FL, 2012).Google Scholar
Depuydt, B., Theuwis, A., Romandic, I., Mater. Sci. Semicond. Process. 9, 437 (2006).CrossRefGoogle Scholar
Darken, L.S., Cox, C.E., Semiconductors for Room Temperature Nuclear Detector Applications (Academic Press, San Diego, 1995).Google Scholar
Knoll, G.F., Radiation Detection and Measurement, 4th ed. (Wiley, New York, 2010).Google Scholar
Gutknecht, D., Nucl. Instrum. Methods Phys. Res. A 288, 13 (1990).Google Scholar
Elleaume, H., Charvet, A.M., Berkvens, P., Berruyer, G., Brochard, T., Dabin, Y., Dominguez, M.C., Draperi, A., Fiedler, S., Goujon, G., Le Duc, G., Nucl. Instrum. Methods Phys. Res. A 428, 513 (1999).CrossRefGoogle Scholar
Duchêne, G., Beck, F.A., Twin, P.J., De France, G., Curien, D., Han, L., Beausang, C.W., Bentley, M.A., Nolan, P.J., Simpson, J., Nucl. Instrum. Methods Phys. Res. A 432, 90 (1999).CrossRefGoogle Scholar
Oyanagi, H., Fonne, C., Gutknecht, D., Dressler, P., Henck, R., Lampert, M.-O., Ogawa, S., Kasai, K., Mohamed, S.B., Nucl. Instrum. Methods Phys. Res. A 513, 340 (2003).CrossRefGoogle Scholar
Pennicard, D., Struth, B., Hirsemann, H., Sarajlic, M., Smoljanin, S., Zuvic, M., Lampert, M.O., Fritzsch, T., Rothermund, M., Graafsma, H., J. Instrum. 9, P12003 (2014).Google Scholar
Sarajlić, M., Pennicard, D., Smoljanin, S., Hirsemann, H., Struth, B., Fritzsch, T., Rothermund, M., Zuvic, M., Lampert, M.O., Askar, M., Graafsma, H., J. Instrum. 12, C01068 (2017).Google Scholar
Tyazhev, A., Budnitsky, D., Mokeev, D., Novikov, V., Zarubin, A., Tolbanov, O., Shelkov, G., Hamann, E., Fauler, A., Fiederle, M., Procz, S., “GaAs Pixel Detectors,” Mater. Res. Soc. Symp. Proc. 1576, Fiederle, M., Ed. (Materials Research Society, Warrendale, PA, 2013), p. 1144.Google Scholar
Tyazhev, A.V., Budnitsky, D.L., Koretskay, O.B., Novikov, V.A., Okaevich, L.S., Potapov, A.I., Tolbanov, O.P., Vorobiev, A.P., Nucl. Instrum. Methods Phys. Res. A 509, 34 (2003).Google Scholar
Veale, M.C., Bell, S.J., Duarte, D.D., French, M.J., Schneider, A., Seller, P., Wilson, M.D., Lozinskaya, A.D., Novikov, V.A., Tolbanov, O.P., Tyazhev, A., Nucl. Instrum. Methods Phys. Res. A 752, 6 (2014).CrossRefGoogle Scholar
Hamann, E., “Characterization of high resistivity GaAs as Sensor Material for Photon Counting Semiconductor Pixel Detectors,” PhD thesis, University of Freiburg, Germany (2013).Google Scholar
Hamann, E., Koenig, T., Zuber, M., Cecilia, A., Tyazhev, A., Tolbanov, O., Procz, S., Fauler, A., Baumbach, T., Fiederle, M., IEEE Trans. Med. Imaging 34, 707 (2015).CrossRefGoogle Scholar
Pennicard, D., Smoljanin, S., Struth, B., Hirsemann, H., Fauler, A., Fiederle, M., Tolbanov, O., Zarubin, A., Tyazhev, A., Shelkov, G., Graafsma, H., J. Instrum. 9, C12026 (2014).CrossRefGoogle Scholar
Veale, M.C., Bell, S.J., Duarte, D.D., French, M.J., Hart, M., Schneider, A., Seller, P., Wilson, M.D., Kachkanov, V., Lozinskaya, A.D., Novikov, V.A., J. Instrum. 9, C12047 (2014).CrossRefGoogle Scholar
Hamann, E., Koenig, T., Zuber, M., Cecilia, A., Tyazhev, A., Tolbanov, O., Procz, S., Fauler, A., Fiederle, M., Baumbach, T., J. Instrum. 10, C01047 (2015).Google Scholar
Shiraki, H., Funaki, M., Ando, Y., Tachibana, A., Kominami, S., Ohno, R., IEEE Trans. Nucl. Sci. 56, 1717 (2009).Google Scholar
Takahashi, T., Watanabe, S., IEEE Trans. Nucl. Sci. 49, 950 (2001).Google Scholar
Funaki, M., Ando, Y., Jinnai, R., Tachibana, A., Ohno, R., Proc. Int. Workshop Semicond. PET (2007), www.acrorad.co.jp/_skin/pdf/Development_of_CdTe_detectors.pdf.Google Scholar
Wilson, M.D., Dummott, L., Duarte, D.D., Green, F.H., Pani, S., Schneider, A., Scuffham, J.W., Seller, P., Veale, M.C., J. Instrum. 10, P10011 (2015).Google Scholar
Wilson, M.D., Connolley, T., Dolbnya, I.P., Grant, P.S., Liotti, E., Lui, A., Malandain, A., Sawhney, K., Seller, P., Veale, M.C., AIP Conf. Proc. 1741, 050008 (2016).Google Scholar
Diemoz, P.C., Bravin, A., Sztrókay-Gaul, A., Ruat, M., Grandl, S., Mayr, D., Auweter, S., Mittone, A., Brun, E., Ponchut, C., Reiser, M.F., Phys. Med. Biol. 61, 8750 (2016).Google Scholar
Ruat, M., Ponchut, C., J. Instrum. 9, C04030 (2014).Google Scholar
Iniewski, K., Rissi, M., Radicci, V., Zambon, P., Schneebeli, M., Iwanczyk, J., Butler, P., Bosch, C., “CZT Growth, Characterization, Fabrication, and Electronics for Operation at 1-100 Mcps/mm2 Count Rates,” paper presented at the workshop on Medical Applications of Spectroscopic X-Ray Detectors, CERN, 2015, http://indico.cern.ch/event/356158/contributions/843372/attachments/707877/971811/015_Iniewski.pdf.Google Scholar
Awadalla, S., Ed., Solid-State Radiation Detectors: Technology and Applications, Series on Devices, Circuits, and Systems (CRC Press, Boca Raton, FL, 2015).Google Scholar
Prekas, G., “The Effect of Crystal Quality on the Behavior of Semi-Insulating CdZnTe Detectors for X-Ray Spectroscopic and High Flux Applications,” presented at IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop, Seattle, WA, October 2014.Google Scholar
Iwanczyk, J.S., Ed., Radiation Detectors for Medical Imaging, Series on Devices, Circuits, and Systems (CRC Press, Boca Raton, FL, 2016).Google Scholar
Iniewski, K., “CZT Sensor – Readout ASIC Interfaces for High-Flux Photon Counting Systems,” presented at the IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop, Strasbourg, France, 2016, http://2016.nss-mic.org/program.php.Google Scholar
Schlomka, J., Roessl, E., Dorscheid, R., Dill, S., Martens, G., Istel, T., Bäumer, C., Herrmann, C., Steadman, R., Zeitler, G., Livne, A., Phys. Med. Biol. 53, 4031 (2008).CrossRefGoogle Scholar