Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T03:03:35.571Z Has data issue: false hasContentIssue false

Self-assembly of functional nanoscale materials

Published online by Cambridge University Press:  10 February 2020

Feng Bai
Affiliation:
Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, China; [email protected]
Kaifu Bian
Affiliation:
Sandia National Laboratories, USA; [email protected]
Binsong Li
Affiliation:
Navitas Systems LLC, USA; [email protected]
Casey Karler
Affiliation:
The University of New Mexico, and Sandia National Laboratories, USA; [email protected]
Ashley Bowman
Affiliation:
The University of New Mexico, and Sandia National Laboratories, USA; [email protected]
Hongyou Fan
Affiliation:
Sandia National Laboratories, and The University of New Mexico, USA; [email protected]
Get access

Abstract

Self-assembly techniques are powerful and efficient methods for the synthesis of nanoscale materials. Using these techniques and their combination with other bottom-up fabrication processes, materials with hierarchical features can be produced with form and function in multiple length scales. We synthesize multifunctional nanoparticles through surfactant-assisted noncovalent interactions using nanoparticle building blocks. Self-assembly of these nano-building blocks results in functional materials that exhibit well-defined morphologies and hierarchical architectures for a wide range of applications. Hierarchically structured porphyrin nanocrystals can be synthesized through surfactant micelle-confined noncovalent interactions of photoactive porphyrins. We can amplify the intrinsic advantages of individual photoactive porphyrins by engineering them into well-defined active nanostructures. Through kinetic control, these nanocrystals exhibit precisely defined size, shape, and spatial arrangement of the individual porphyrins, which facilitates intermolecular mass and energy transfer. These self-assembly techniques provide remarkable flexibility to design morphologies and architectures that produce desirable properties for practical applications including photocatalysis, photodegradation, and phototherapy.

Type
Technical Feature
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This article is based on the MRS Mid-Career Researcher Award presentation given by Hongyou Fan, Sandia National Laboratories and The University of New Mexico, at the 2019 MRS Spring Meeting in Phoenix, Ariz.

References

Talapin, D.V., Shevchenko, E.V., Chem. Rev. 116, 10343 (2016).CrossRefGoogle Scholar
Grzelczak, M., Vermant, J., Furst, E.M., Liz-Marzán, L.M., ACS Nano 4, 3591 (2010).CrossRefGoogle Scholar
Chen, S., Slattum, P., Wang, C., Zang, L., Chem. Rev. 115, 11967 (2015).CrossRefGoogle Scholar
Chen, Q., Pugno, N.M., J. Mech. Behav. Biomed. Mater. 19, 3 (2013).CrossRefGoogle Scholar
Brown, J.S., Photochem. Photobiol. 26, 319 (1977).CrossRefGoogle Scholar
Wei, W., Sun, J., Fan, H., MRS Bull . 44, 178 (2019).CrossRefGoogle Scholar
Wei, W., Bai, F., Fan, H., Angew. Chem. Int. Ed. Engl. 58, 11956 (2019).CrossRefGoogle Scholar
Wei, W., Bai, F., Fan, H., iScience 11, 272 (2019).CrossRefGoogle Scholar
Fan, H., Chem. Commun. 1383 (2008).Google Scholar
Bai, F., Bian, K., Huang, X., Wang, Z., Fan, H., Chem. Rev. 119, 7673 (2019).CrossRefGoogle Scholar
Fan, H., Yang, K., Boye, D.M., Sigmon, T., Malloy, K.J., Xu, H., López, G.P., Brinker, C.J., Science 304, 567 (2004).CrossRefGoogle Scholar
Fan, H., Chen, Z., Brinker, C.J., Clawson, J., Alam, T., J. Am. Chem. Soc. 127, 13746 (2005).CrossRefGoogle Scholar
Fan, H., Leve, E.W., Scullin, C., Gabaldon, J., Tallant, D., Bunge, S., Boyle, T., Wilson, M.C., Brinker, C.J., Nano Lett . 5, 645 (2005).CrossRefGoogle Scholar
Fan, H., Gabaldon, J., Brinker, C.J., Jiang, Y.-B., Chem. Commun. 2323 (2006).Google Scholar
Yang, K., Fan, H., Malloy, K.J., Brinker, C.J., Sigmon, T.W., Thin Solid Films 491, 38 (2005).CrossRefGoogle Scholar
Fan, H., Wright, A., Gabaldon, J., Rodriguez, A., Brinker, C.J., Jiang, Y.-B., Adv. Funct. Mater. 16, 891 (2006).CrossRefGoogle Scholar
Wright, A., Gabaldon, J., Burckel, D.B., Jiang, Y.-B., Tian, Z.R., Liu, J., Brinker, C.J., Fan, H., Chem. Mater. 18, 3034 (2006).CrossRefGoogle Scholar
Dunphy, D., Fan, H., Li, X., Wang, J., Brinker, C.J., Langmuir 24, 10575 (2008).CrossRefGoogle Scholar
Fan, H., Leve, E., Gabaldon, J., Wright, A., Haddad, R.E., Brinker, C.J., Adv. Mater. 17, 2587 (2005).CrossRefGoogle Scholar
Sun, Z., Bai, F., Wu, H., Schmitt, S.K., Boye, D.M., Fan, H., J. Am. Chem. Soc. 131, 13594 (2009).CrossRefGoogle Scholar
Liu, Y., Wang, L., Feng, H., Ren, X., Ji, J., Bai, F., Fan, H., Nano Lett . 19, 2614 (2019).CrossRefGoogle Scholar
Zhang, N., Wang, L., Wang, H., Cao, R., Wang, J., Bai, F., Fan, H., Nano Lett . 18, 560 (2018).CrossRefGoogle Scholar
Wang, D., Niu, L., Qiao, Z.-Y., Cheng, D.-B., Wang, J., Zhong, Y., Bai, F., Wang, H., Fan, H., ACS Nano 12, 3796 (2018).CrossRefGoogle Scholar
Wang, J., Zhong, Y., Wang, X., Yang, W., Bai, F., Zhang, B., Alarid, L., Bian, K., Fan, H., Nano Lett . 17, 6916 (2017).CrossRefGoogle Scholar
Wang, J., Zhong, Y., Wang, L., Zhang, N., Cao, R., Bian, K., Alarid, L., Haddad, R.E., Bai, F., Fan, H., Nano Lett . 16, 6523 (2016).CrossRefGoogle Scholar
Zhong, Y., Wang, Z., Zhang, R., Bai, F., Wu, H., Haddad, R., Fan, H., ACS Nano 8, 827 (2014).CrossRefGoogle Scholar
Zhong, Y., Wang, J., Zhang, R., Wei, W., Wang, H., , X., Bai, F., Wu, H., Haddad, R., Fan, H., Nano Lett . 14, 7175 (2014).CrossRefGoogle Scholar
Sun, Z., Bai, F., Wu, H., Boye, D.M., Fan, H., Chem. Mater. 24, 3415 (2012).CrossRefGoogle Scholar
Bai, F., Sun, Z., Wu, H., Haddad, R.E., Xiao, X., Fan, H., Nano Lett . 11, 3759 (2011).CrossRefGoogle Scholar
Bai, F., Sun, Z., Wu, H., Haddad, R.E., Coker, E.N., Huang, J.Y., Rodriguez, M.A., Fan, H., Nano Lett . 11, 5196 (2011).CrossRefGoogle Scholar
Rodriguez, A.T., Li, X., Wang, J., Steen, W.A., Fan, H., Adv. Funct. Mater. 17, 2710 (2007).CrossRefGoogle Scholar
Fan, H., López, G.P., Langmuir 13, 119 (1997).CrossRefGoogle Scholar
Bian, K., Schunk, H., Ye, D., Hwang, A., Luk, T.S., Li, R., Wang, Z., Fan, H., Nat. Commun. 9, 2365 (2018).CrossRefGoogle Scholar
Bian, K., Li, R., Fan, H., Chem. Mater. 30, 6788 (2018).CrossRefGoogle Scholar
Wei, W., Wang, Y., Ji, J., Zuo, S., Li, W., Bai, F., Fan, H., Nano Lett . 18, 4467 (2018).CrossRefGoogle Scholar
Li, B., Bian, K., Lane, J.M.D., Salerno, K.M., Grest, G.S., Ao, T., Hickman, R., Wise, J., Wang, Z., Fan, H., Nat. Commun. 8, 14778 (2017).CrossRefGoogle Scholar
Li, B., Bian, K., Zhou, X., Lu, P., Liu, S., Brener, I., Sinclair, M., Luk, T., Schunk, H., Alarid, L., Clem, P.G., Wang, Z., Fan, H., Sci. Adv. 3 (2017).Google Scholar
Li, B., Wen, X., Li, R., Wang, Z., Clem, P.G., Fan, H., Nat. Commun. 5, 4179 (2014).CrossRefGoogle Scholar
Li, W., Fan, H., Li, J., Nano Lett . 14, 4951 (2014).CrossRefGoogle Scholar
Wang, Z., Schliehe, C., Wang, T., Nagaoka, Y., Cao, Y.C., Bassett, W.A., Wu, H., Fan, H., Weller, H., J. Am. Chem. Soc. 133, 14484 (2011).CrossRefGoogle Scholar
Wu, H., Bai, F., Sun, Z., Haddad, R.E., Boye, D.M., Wang, Z., Fan, H., Angew. Chem. Int. Ed. Engl. 49, 8431 (2010).CrossRefGoogle Scholar
Wu, H., Bai, F., Sun, Z., Haddad, R.E., Boye, D.M., Wang, Z., Huang, J.Y., Fan, H., J. Am. Chem. Soc. 132, 12826 (2010).CrossRefGoogle Scholar
Wu, H., Wang, Z., Fan, H., J. Am. Chem. Soc. 136, 7634 (2014).CrossRefGoogle Scholar
Li, B., Smilgies, D.-M., Price, A.D., Huber, D.L., Clem, P.G., Fan, H., ACS Nano 8, 4799 (2014).CrossRefGoogle Scholar
Fei, L., Xu, Y., Wu, X., Chen, G., Li, Y., Li, B., Deng, S., Smirnov, S., Fan, H., Luo, H., Nanoscale 6, 3664 (2014).CrossRefGoogle Scholar