Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T09:10:33.957Z Has data issue: false hasContentIssue false

Self-Assembled and Langmuir-Blodgett Organic Thin Films As Functional Materials

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Biological membranes provide numerous functions for the survival of cells, ranging from molecular recognition to signal transduction and energy conversion. The spacial organization of proteins, enzymes, glycoproteins, and glycolipids in the membrane is provided by the lipid bilayer matrix. The lipids of the membrane are small molecules which have the common characteristic of having both a hydrophilic and a hydrophobic moiety. In aqueous media, they are entropically driven to self-organize in bimolecular sheets (see the article by Alper in this issue). These sheets, in addition to providing a fluid matrix for a wide variety of biomolecules, also serve to impede the flow of molecules across the membrane.

Type
Biology and Materials Synthesis
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ulman, A., An Introduction to Ultrathin Organic Films from Langmuir-Blodgett to Self-Assembly, (Academic Press, New York) 1991.Google Scholar
2.Swalen, J.D., Allara, D.L., Andrade, J.D., Chandross, E.A., Garoff, S., Israelachvili, J., McCarthy, T.J., Murray, R., Pease, R.F., Rabolt, J.F., Wynne, K.J., and Yu, H., Langmuir 3 (1987) p. 932950.CrossRefGoogle Scholar
3.Gaines, G.L., Insoluble Monolayers at Liquid-Gas Interfaces (Wiley Interscience, New York, 1966).Google Scholar
4.Roberta, G.G., Langmuir-Blodgett Films (Plenum Press, New York, 1990).CrossRefGoogle Scholar
5.Tsuzuki, H., Watanabe, T., Okawa, Y., Yoshida, S., Yano, S., Koumoto, K., Komiyana, M., and Nihei, Y., Chem. Lett. (1988) p. 1265.CrossRefGoogle Scholar
6.Reichert, W.M., Bruckner, C.J., and Joseph, J., Thin Solid Films 152 (1987) p. 345376.CrossRefGoogle Scholar
7.Whitesides, G.M. and Laibinis, P.E., Langmuir 6 (1990) p. 8796.CrossRefGoogle Scholar
8.Maoz, R. and Sagiv, J., J. Colloid and Interface Sci. 100 (1984) p. 465496.CrossRefGoogle Scholar
9.DePalma, V. and Tillman, N., Langmuir 5 (1989) p. 868872.CrossRefGoogle Scholar
10.Novotny, V., Swalen, J.D., and Rabe, J.P., Langmuir 5 (1989) p. 485489.CrossRefGoogle Scholar
11.Hickman, J.J., Zou, C., Ofer, D., Harvey, P.D., and Wrighton, M.S., J. Am. Chem. Soc. 111 (1989) p. 72717272.CrossRefGoogle Scholar
12.Laibinis, P.E., Hickman, J.J., Wrighton, M.S., and Whitesides, G.M., Science 245 (1989) p. 845847.CrossRefGoogle Scholar
13.Uekita, M., Awaji, H., Murata, M., and Mizunuma, S., Thin Solid Films 180 (1989) p. 271.CrossRefGoogle Scholar
14.Kato, H., Tawata, M., Morita, S., and Hattori, S., Thin Solid Films 180 (1989) p. 91.CrossRefGoogle Scholar
15.Fuchs, H., Ohst, H., and Prass, W., Advanced Materials 3 (1991) p. 1018.CrossRefGoogle Scholar
16.Chen, Y.R., Annu. Rev. Phys. Chem. 40 (1989) p. 327350.Google Scholar
17.Coyle, L.C., Danilow, Y.N., Juliano, R.L., and Regen, S.L., Chem. Mater. 1 (1989) p. 606611.CrossRefGoogle Scholar
18.Owens, N.F., Gingell, D., and Trommler, A., J. Cell Sci. 91 (1988) p. 269279.CrossRefGoogle Scholar
19.Charych, D.H. and Majda, M., Thin Solid Films 210/211 (1992) p. 348353.CrossRefGoogle Scholar
20.Charych, D.H., Landau, E.M., and Majda, M., J. Am. Chem. Soc. 113 (1991) p. 3340.CrossRefGoogle Scholar
21.Haussling, L., Ringsdorf, H., Schmitt, F.J., and Knoll, W., Langmuir 7 (1991) p. 18371840.CrossRefGoogle Scholar
22.Ahlers, M., Muller, W., Reichert, A., Ringsdorf, H., and Venzmer, J., Angew. Chem. Int. Ed., English, 29 (1990), 12691285.CrossRefGoogle Scholar
23.Blodgett, K.B., J. Am. Chem. Soc. 57 (1935) p. 1007.CrossRefGoogle Scholar
24. Proc. 5th Int. Conf. Langmuir-Blodgett Films, Thin Solid Films 210/211 (1992) p. 492702, and references therein.CrossRefGoogle Scholar
25.Cemel', A.Fort, T., and Lando, J.B., J. Polym. Sci. A1, 10 (1972) p. 2061; D. Day and H. Ringsdorf, J. Polm. Sci., Polym. Lett. Ed. 198, 16, 205.CrossRefGoogle Scholar
26.Tieke, B., Adv. Polym. Sci. 71 (1985) p. 79.CrossRefGoogle Scholar
27.Laschewsky, A., Ringsdorf, H., and Schmidt, G., Polymer 29 (1988) p. 448.CrossRefGoogle Scholar
28.Hub, H., Hupfer, B., and Ringsdorf, H., Springer Ser. Chem. Phys. 11 (1980) p. 253.CrossRefGoogle Scholar
29.Gun, J., Iscovici, R., Sagiv, J., J. Colloid Interface Sci. 101 (1984) p. 201.CrossRefGoogle Scholar
30.Sagiv, J., J. Am. Chem. Soc. 102 (1980) p. 92.CrossRefGoogle Scholar
31.Nuzzo, R.G. and Allara, D.L., J. Am. Chem. Soc. 105 (1983) p. 4481.CrossRefGoogle Scholar
32.Holmes-Farley, S.R., Langmuir 4 (1988) p. 766.CrossRefGoogle Scholar
33.Sukenik, C.N., Balachander, N., and Culp, L.A., J. Biomedical Mater. Res. 24 (1990) p. 13071323.CrossRefGoogle Scholar
34.Kessel, C.R. and Granick, S., Langmuir 7 (1991) p. 532538.CrossRefGoogle Scholar
35.Mastandrea, M., Wilson, T., and Bednarski, M., J. Mater. Educ. 11 (1990) p. 529.Google Scholar
36.Bain, C.D., Evall, J., and Whitesides, G.M., J. Am. Chem. Soc. 111 (1989) p. 71557164.CrossRefGoogle Scholar
37.Bain, C.D. and Whitesides, G.M., J. Am. Chem. Soc. 111 (1989) p. 71647175.CrossRefGoogle Scholar
38.Keller, H., Schrepp, W., and Fuchs, H., Thin Solid Films 210/211 (1992) p. 799802.CrossRefGoogle Scholar
39.Soriaga, M.P. and Hubbard, A.T., I.Am. Chem. Soc. 104 (1982) p. 3937.CrossRefGoogle Scholar
40.Broers, A.N., J. Vac. Sci. Technol. 16 (1979) p. 1692.CrossRefGoogle Scholar
41.Broers, A.N. and Pomerantz, M., Thin Solid Films 99 (1983) p. 323329.CrossRefGoogle Scholar
42.Fariss, G., Lando, J., and Rickert, S., Thin Solid Films 99 (1983) p. 305315.CrossRefGoogle Scholar
43.Barraud, A., Thin Solid Films 99 (1983) p. 317.CrossRefGoogle Scholar
44.Sudiwala, R.V., Cheng, C., Wilson, E.G., and Batchelder, D.N., Thin Solid Films 210/211 (1992) p. 452454.CrossRefGoogle Scholar
45.Fodor, S.P.A., Read, J. Leighton, Pirrung, M.C., Stryer, L., Lu, A. Tsai, and Solas, D., Science 251 (1991) p. 767773.CrossRefGoogle Scholar
46.Cwirla, S.E., Peters, E.A., Barrett, R.W., and Dower, W.J., Proc. Natl. Acad. Sci. U.S.A. 87 (1990) p. 6378.CrossRefGoogle Scholar
47.Dulcey, C.S., Georger, J.H. Jr., Krauthamer, V., Stenger, D.A., Fare, T.L., and Calbert, J.M., Science 252 (1991) p. 551554.CrossRefGoogle Scholar
48.Gun, J. and Sagiv, J., J. Colloid Interface Sci. 112 (1986) p. 457.CrossRefGoogle Scholar
49.Tillman, N., Ulman, A., Schildkraut, J.S., and Penner, T.L., J. Am. Chem. Soc. 110 (1988) p. 6136.CrossRefGoogle Scholar
50.Chaudhury, C. and Whitesides, G., Science 256 (1992) p. 15391541.CrossRefGoogle Scholar
51.Allen, C.M. and Drauglis, E., Wear 14 (1969) p. 363384.CrossRefGoogle Scholar
52.Levine, O. and Zisman, W.A., J. Phys. Chem. 61 (1957) p. 1068.CrossRefGoogle Scholar
53.Salmeron, M., Ogletree, D.F., Neubauer, G., Murray, M.N., Wilson, T.E., Bednarski, M.D., Kolbe, W., and Folch, A., SPIE 1556 (1991) p. 4054.Google Scholar
54.Owens, N.F., Gingell, D., and Trommler, A., J. Cell Sci. 91 (1988) p. 269279.CrossRefGoogle Scholar
55.Budach, W., Ahuja, R.C., Mobius, D., and Schrepp, W., Thin Solid Films 210/211 (1992) p. 434436.CrossRefGoogle Scholar
56.Roberts, G.G., Petty, M.C., Baker, S., Fowler, M.T., and Thomas, N.J., Thin Solid Films 132 (1985) p. 113.CrossRefGoogle Scholar
57.Burr, P.M., Jeffrey, P.D., Benjamin, J.D., and Uren, M.J., Thin Solid Films 151 (1987) p. L111.CrossRefGoogle Scholar
58.Jiang, D.P., A Lu, D., Li, Y.J., Pang, X.M., and Hua, Y.L., Thin Solid Films 199 p. 173179.CrossRefGoogle Scholar
59.Ohnishi, M., Ishimoto, C., and Seto, J., Thin Solid Films 210/211 (1992) p. 455457.CrossRefGoogle Scholar
60.Furuki, M. and Pu, L. Sun, Thin Solid Films 210/211 (1992) p. 471473.CrossRefGoogle Scholar
61.Rapp, M., Stanzel, R., Schickfus, M.V., Hunklinger, S., Fuchs, H., Schrepp, W., Keller, H., and Fleischmann, B., Thin Solid Films 210/211 (1992) p. 474476.CrossRefGoogle Scholar