Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T15:40:44.562Z Has data issue: false hasContentIssue false

Selective laser melting of aluminum alloys

Published online by Cambridge University Press:  12 April 2017

Nesma T. Aboulkhair
Affiliation:
Centre for Additive Manufacturing, The University of Nottingham, UK; [email protected]
Nicola M. Everitt
Affiliation:
Bioengineering Research Group, The University of Nottingham, UK; [email protected]
Ian Maskery
Affiliation:
Centre for Additive Manufacturing, The University of Nottingham, UK; [email protected]
Ian Ashcroft
Affiliation:
Centre for Additive Manufacturing, The University of Nottingham, UK; [email protected]
Chris Tuck
Affiliation:
Centre for Additive Manufacturing, The University of Nottingham, UK; [email protected]
Get access

Abstract

Metal additive manufacturing (AM) processes, such as selective laser melting (SLM), enable powdered metals to be formed into arbitrary three-dimensional shapes. For aluminum alloys, which are desirable in many high-value applications for their low density and good mechanical performance, SLM is regarded as challenging due to the difficulties in laser melting aluminum powders. However, a number of recent studies have demonstrated successful aluminum processing, and have gone on to explore its potential for use in advanced AM componentry. In addition to enabling the fabrication of highly complex structures, SLM produces parts with characteristically fine microstructures that yield distinct mechanical properties. Research is rapidly progressing in this field, with promising results opening up a range of possible applications across scientific and industrial sectors. This article reports on recent developments in this area of research and highlights key topics that require further attention.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Das, S., Bourell, D.L., Babu, S.S., MRS Bull. 41 (10), 729 (2016).CrossRefGoogle Scholar
Baumers, M., Tuck, C., Wildman, R., Ashcroft, I., Rosamond, E., Hague, R., Proc. 23rd Solid Freeform Fabr. Symp. (The University of Texas at Austin, Austin, TX, 2012), p. 932.Google Scholar
Baumers, M., Tuck, C., Wildman, R., Ashcroft, I., Rosamond, E., Hague, R., J. Ind. Ecol. 17, 418 (2013).CrossRefGoogle Scholar
Zhang, B., Liao, H., Coddet, C., Mater. Des. 34, 753 (2012).CrossRefGoogle Scholar
Ferrar, B., Mullen, L., Jones, E., Stamp, R., Sutcliffe, C.J., J. Mater. Process. Technol. 212 (2), 355 (2012).CrossRefGoogle Scholar
Yadroitsev, I., Bertrand, P., Smurov, I., Appl. Surf. Sci. 253 (19), 8064 (2007).CrossRefGoogle Scholar
Li, R., Shi, Y., Wang, Z., Wang, L., Liu, J., Jiang, W., Appl. Surf. Sci. 256 (13), 4350 (2010).CrossRefGoogle Scholar
Baumers, M., Tuck, C., Wildman, R., Ashcroft, I., Hague, R., J. Ind. Ecol. (forthcoming).Google Scholar
Gibson, I., Rosen, D.W., Stucker, B., Additive Manufacturing Technologies (Springer, New York, 2010).CrossRefGoogle Scholar
Loeber, L., Biamino, S., Ackelid, U., Sabbadini, S., Epicoco, P., Fino, P., Eckert, J., Proc. 22nd Solid Freeform Fabr. Symp. (The University of Texas at Austin, Austin, TX, 2011), p. 547.Google Scholar
Kempen, K., Vrancken, B., Thijs, L., Buls, S., Van Humbeeck, J., Kruth, J.-P., Proc. 24th Solid Freeform Fabr. Symp. (The University of Texas at Austin, Austin, TX, 2013), p. 131.Google Scholar
Buchbinder, D., Meiners, W., Pirch, N., Wissenbach, K., Schrage, J., J. Laser Appl. 26 (1), 012004 (2014).CrossRefGoogle Scholar
Frazier, W.E., J. Mater. Eng. Perform. 23 (6), 12 (2014).CrossRefGoogle Scholar
Bourell, D.L., Rosen, D.W., Ming, L., 3D Print. Addit. Manuf. 1 (1), 4 (2014).Google Scholar
Matilainen, V., Piili, H., Salminen, A., Syvänen, T., Nyrhilä, O., Phys. Procedia 56, 317 (2014).CrossRefGoogle Scholar
Bourell, D.L., Joseph, J., Beaman, J., Leu, M.C., Rosen, D.W., “A Brief History of Additive Manufacturing and the 2009 Roadmap for Additive Manufacturing: Looking Back and Looking Ahead,” presented at the US–Turkey Workshop On Rapid Technologies, Instanbul, Turkey, September 24, 2009.Google Scholar
Hofmann, D.C., Roberts, S., Otis, R., Kolodziejska, J., Dillon, R.P., Suh, J.O., Shapiro, A.A., Liu, Z.K., Borgonia, J.P., Sci. Rep. 4, 5357 (2014).CrossRefGoogle Scholar
Guo, N., Leu, M.C., Front. Mech. Eng. 8 (3), 215 (2013).CrossRefGoogle Scholar
Leuders, S., Thöne, M., Riemer, A., Niendorf, T., Tröster, T., Richard, H.A., Maier, H.J., Int. J. Fatigue 48, 300 (2013).CrossRefGoogle Scholar
Schleifenbaum, H., Meiners, W., Wissenbach, K., Hinke, C., J. Manuf. Sci. Technol. 2 (3), 161 (2010).CrossRefGoogle Scholar
Brandl, E., Heckenberger, U., Holzinger, V., Buchbinder, D., Mater. Des. 34, 159 (2012).CrossRefGoogle Scholar
Tuck, C.J., Hague, R.J.M., Ruffo, M., Ransley, M., Adams, P., Int. J. Comput. Integr. Manuf. 21 (3), 245 (2008).CrossRefGoogle Scholar
Buchbinder, D., Schleifenbaum, H., Heidrich, S., Meiners, W., Bültmann, J., Phys. Procedia A 12, 271 (2011).CrossRefGoogle Scholar
Yadroitsev, I., Smurov, I., Phys. Procedia B 5, 551 (2010).CrossRefGoogle Scholar
Maskery, I., Aboulkhair, N.T., Aremu, A.O., Tuck, C.J., Ashcroft, I.A., Wildman, R.D., Hague, R.J.M., Mater. Sci. Eng. A 670, 264 (2016).CrossRefGoogle Scholar
Yadroitsev, I., Gusarov, A., Yadroitsava, I., Smurov, I., J. Mater. Process. Technol. 210 (12), 1624 (2010).CrossRefGoogle Scholar
Aboulkhair, N.T., Maskery, I., Tuck, C., Ashcroft, I., Everitt, N.M., J. Mater. Process. Technol. 230, 88 (2016).CrossRefGoogle Scholar
Aboulkhair, N.T., “Additive Manufacture of an Aluminium Alloy: Processing, Microstructure, and Mechanical Properties,” PhD thesis, The University of Nottingham, UK (2015).Google Scholar
Herderick, E., “Additive Manufacturing of Metals: A Review,” Proc. Mater. Sci. Technol. Conf. 1 (AIST, Warrendale, PA, 2011), p. 1413.Google Scholar
Wong, K.V., Hernandez, A., ISRN Mech. Eng. 2012, 1 (2012).CrossRefGoogle Scholar
Olakanmi, E.O., Cochrane, R.F., Dalgarno, K.W., Prog. Mater. Sci. 74, 401 (2015).CrossRefGoogle Scholar
Tisza, M., Physical Metallurgy for Engineers (ASM International, Materials Park, OH; Fruend Publishing House, London, 2002).Google Scholar
Li, Y., Gu, D., Mater. Des. 63, 856 (2014).CrossRefGoogle Scholar
Totten, G.E., Mackenzie, D.S., Handbook of Aluminum: Physical Metallurgy and Processes, 1st ed. (CRC Press, New York, 2003).Google Scholar
Polmear, I.J., Light Alloys: Metallurgy of the Light Metals, 3rd ed. (Butterworth-Heinemann, 1995).Google Scholar
Hosford, W.H., Physical Metallurgy, 2nd ed. (CRC Press, New York, 2010).CrossRefGoogle Scholar
Dadbakhsh, S., Hao, L., J. Alloys Compd. 541, 328 (2012).CrossRefGoogle Scholar
Aboulkhair, N.T., Everitt, N.M., Ashcroft, I., Tuck, C., Addit. Manuf. 1, 77 (2014).Google Scholar
Wang, X.J., Zhang, L.C., Fang, M.H., Sercombe, T.B., Mater. Sci. Eng. A 597, 370 (2014).CrossRefGoogle Scholar
Thijs, L., Kempen, K., Kruth, J.-P., Van Humbeeck, J., Acta Mater. 61 (5), 1809 (2013).CrossRefGoogle Scholar
Louvis, E., Fox, P., Sutcliffe, C.J., J. Mater. Process. Technol. 211 (2), 275 (2011).CrossRefGoogle Scholar
Read, N., Wang, W., Essa, K., Attallah, M.M., Mater. Des. 65, 417 (2015).CrossRefGoogle Scholar
Montero Sistiaga, M.L., Mertens, R., Vrancken, B., Wang, X., Van Hooreweder, B., Kruth, J.-P., Van Humbeeck, J., J. Mater. Process. Technol. 238, 437 (2016).CrossRefGoogle Scholar
Aboulkhair, N.T., Maskery, I., Tuck, C., Ashcroft, I., Everitt, N., Proc. SPIE 9657, 965702 (2015).Google Scholar
Aboulkhair, N.T., Tuck, C., Ashcroft, I., Maskery, I., Everitt, N.M., Metall. Mater. Trans. A 46A (8), 3337 (2015).CrossRefGoogle Scholar
Aboulkhair, N.T., Maskery, I., Tuck, C., Ashcroft, I., Everitt, N.M., Mater. Sci. Eng. A 667, 139 (2016).CrossRefGoogle Scholar
Maskery, I., Aboulkhair, N.T., Corfield, M.R., Tuck, C., Clare, A.T., Leach, R.K., Wildman, R.D., Ashcroft, I.A., Hague, R.J.M., Mater. Charact. 111, 193 (2016).CrossRefGoogle Scholar
Wu, J., Wang, X.Q., Wang, W., Attallah, M.M., Loretto, M.H., Acta Mater. 117, 311 (2016).CrossRefGoogle Scholar
Rosenthal, I., Stern, A., Frage, N., Metallogr. Microstruct. Anal. 3 (6), 448 (2014).CrossRefGoogle Scholar
Aboulkhair, N.T., Maskery, I., Tuck, C., Ashcroft, I., Everitt, N.M., Mater. Des. 104, 174 (2016).CrossRefGoogle Scholar
Ahuja, B., Karg, M., Nagulin, K.Y., Schmidt, M., Phys. Procedia 56, 135 (2014).CrossRefGoogle Scholar
Reschetnik, W., Brüggemann, J.P., Aydinöz, M.E., Grydin, O., Hoyer, K.P., Kullmer, G., Richard, H.A., Procedia Struct. Integr. 2, 3040 (2016).CrossRefGoogle Scholar
Rao, H., Giet, S., Yang, K., Wu, X., Davies, C.H.J., Mater. Des. 109, 334 (2016).CrossRefGoogle Scholar
Kang, N., Coddet, P., Chen, C., Wang, Y., Liao, H., Coddet, C., Mater. Des. 99, 120 (2016).CrossRefGoogle Scholar
Kang, N., Coddet, P., Liao, H., Baur, T., Coddet, C., Appl. Surf. Sci. 378, 142 (2016).CrossRefGoogle Scholar
Li, X.P., O’Donnell, K.M., Sercombe, T.B., Addit. Manuf. 10, 10 (2016).Google Scholar
Suryawanshi, J., Prashanth, K.G., Scudino, S., Eckert, J., Prakash, O., Ramamurty, U., Acta Mater. 115, 285 (2016).CrossRefGoogle Scholar
Ma, P., Jia, Y., Prashanth, K.G., Scudino, S., Yu, Z., Eckert, J., J. Alloys Compd. 657, 430 (2016).CrossRefGoogle Scholar
Ding, Y., Muñiz-Lerma, J.A., Trask, M., Chou, S., Walker, A., Brochu, M., MRS Bull. 41 (10), 745 (2016).CrossRefGoogle Scholar
Aboulkhair, N.T., Maskery, I., Ashcroft, I., Tuck, C., Everitt, N.M., “The Role of Powder Properties on the Processability of Aluminium Alloys in Selective Laser Melting,” presented at the Lasers in Manufacturing Conference, Munich, Germany, 2015.Google Scholar
Ion, J.C., Laser Processing of Engineering Materials: Principles, Procedure and Industrial Application (Butterworth-Heinemann, St. Louis, 2005).Google Scholar
Totten, G.E., MacKenzie, D.S., Eds., Handbook of Aluminum, Volume 2: Alloy Production and Materials Manufacturing (CRC Press, New York, 2003).Google Scholar
Kamath, C., El-dasher, B., Gallegos, G.F., King, W.E., Sisto, A., “Density of Additively Manufactured, 316L SS Parts Using Laser Powder-Bed Fusion at Powers Up to 400W,” (UNT Digital Library), http://digital.library.unt.edu/ark:/67531/metadc872227 (accessed October 2016).Google Scholar
Tuck, C., Maskery, I., Simonelli, M., Aboulkhair, N., Ashcroft, I., Everitt, N., Wildman, R., Hague, R., “Aspects of the Process and Material Relationships in the Selective Laser Melting of Aluminium Alloys,” presented at the TMS Annual Meeting & Exhibition (Orlando, FL, March 15–19, 2015).Google Scholar
Simonelli, M., Tuck, C., Aboulkhair, N.T., Maskery, I., Ashcroft, I., Wildman, R.D., Hague, R., Metall. Mater. Trans. A 46A (9), 3842 (2015).CrossRefGoogle Scholar
Kempen, K., Thijs, L., Yasa, E., Badrossamay, M., Verheecke, W., Kruth, J.-P., Proc. 22nd Solid Freeform Fabr. Symp. (The University of Texas at Austin, Austin, TX, 2011), p. 484.Google Scholar
Dai, D., Gu, D., Mater. Des. 55, 482 (2014).CrossRefGoogle Scholar
Yadroitsev, I., Krakhmalev, P., Yadroitsava, I., Johansson, S., Smurov, I., J. Mater. Process. Technol. 213 (4), 606 (2013).CrossRefGoogle Scholar
Pupo, Y., Delgado, J., Serenó, L., Ciurana, J., Procedia Eng. 63, 370 (2013).CrossRefGoogle Scholar
King, W.E., Barth, H.D., Castillo, V.M., Gallegos, G.F., Gibbs, J.W., Hahn, D.E., Kamath, C., Rubenchik, A.M., J. Mater. Process. Technol. 214 (12), 2915 (2014).CrossRefGoogle Scholar
Su, X., Yang, Y., J. Mater. Process. Technol. 212 (10), 2074 (2012).CrossRefGoogle Scholar
Simonelli, M., Tse, Y.Y., Tuck, C., Metall. Mater. Trans. A 45 (6), 2863 (2014).CrossRefGoogle Scholar
Hatch, J.E., Aluminum: Properties and Physical Metallurgy (ASM International, Materials Park, OH, 1984).Google Scholar
Everitt, N.M., Aboulkhair, N.T., Maskery, I., Tuck, C., Ashcroft, I., Adv. Mater. Lett. 7 (1), 13 (2016).CrossRefGoogle Scholar
Prashanth, K.G., Scudino, S., Klauss, H.J., Surreddi, K.B., Löber, L., Wang, Z., Chaubey, A.K., Kühn, U., Eckert, J., Mater. Sci. Eng. A 590, 153 (2014).CrossRefGoogle Scholar
Kurz, W., Trivedi, R., Metall. Mater. Trans. A 22 (12), 3051 (1991).CrossRefGoogle Scholar
Ma, P., Prashanth, K.G., Scudino, S., Jia, Y.D., Wang, H.W., Zou, C.M., Wei, Z.J., Eckert, J., Metals 4 (1), 28 (2014).CrossRefGoogle Scholar
Li, W., Li, S., Liu, J., Zhang, A., Zhou, Y., Wei, Q., Yan, C., Shi, Y., Mater. Sci. Eng. A 663, 116 (2016).CrossRefGoogle Scholar
Siddique, S., Imran, M., Wycisk, E., Emmelmann, C., Walther, F., J. Mater. Process. Technol. 221, 205 (2015).CrossRefGoogle Scholar
Kempen, K., Thijs, L., Van Humbeeck, J., Kruth, J.P., Phys. Procedia 39, 439 (2012).CrossRefGoogle Scholar
Bartkowiak, K., Ullrich, S., Frick, T., Schmidt, M., Phys. Procedia A 12, 393 (2011).CrossRefGoogle Scholar
Tradowsky, U., White, J., Ward, R.M., Read, N., Reimers, W., Attallah, M.M., Mater. Des. 105, 212 (2016).CrossRefGoogle Scholar
Prashanth, K.G., Damodaram, R., Scudino, S., Wang, Z., Prasad Rao, K., Eckert, J., Mater. Des. 57, 632 (2014).CrossRefGoogle Scholar
Siddique, S., Imran, M., Walther, F., Int. J. Fatigue (forthcoming).Google Scholar
Maskery, I., Aboulkhair, N.T., Tuck, C., Wildman, R.D., Ashcroft, I.A., Everitt, N.M., Hague, R.J.M., 26th Solid Freeform Fabr. Symp. (The University of Texas at Austin, Austin, TX, 2015), p. 1017.Google Scholar
Tang, M., Pistorius, P.C., Int. J. Fatigue (forthcoming).Google Scholar
Edwards, P., Ramulu, M., Mater. Sci. Eng. A 598, 327 (2014).CrossRefGoogle Scholar
Kanagarajah, P., Brenne, F., Niendorf, T., Maier, H.J., Mater. Sci. Eng. A 588, 188 (2013).CrossRefGoogle Scholar
Buchbinder, D., Meiners, W., Wissenbach, K., Poprawe, R., J. Laser Appl. 27, S29205 (2015).CrossRefGoogle Scholar
González, R., González, A., Talamantes-Silva, J., Valtierra, S., Mercado-Solís, R.D., Garza-Montes-de-Oca, N.F., Colás, R., Int. J. Fatigue 54, 118 (2013).CrossRefGoogle Scholar
Zahavi, E., Torbilo, V., Fatigue Design: Life Expectancy of Machine Parts (CRC Press, New York, 1996).Google Scholar
Suresh, S., Fatigue of Materials, 2nd ed. (Cambridge University Press, Cambrige, UK, 1998).CrossRefGoogle Scholar
Razavi, R.S., Gordani, G.R., “Laser Surface Treatments of Aluminum Alloys,” in Recent Trends in Processing and Degradation of Aluminium Alloys, Ahmed, P.Z., Ed. (InTech, 2011), pp. 115154, doi:10.5772/18451.Google Scholar
Gnanamuthu, D.S., Opt. Eng. 19 (5), 195783 (1980).CrossRefGoogle Scholar
Tomida, S., Nakata, K., Saji, S., Kubo, T., Surf. Coat. Technol. 142–144, 585 (2001).CrossRefGoogle Scholar
Sachs, M., Hentschel, O., Schmidt, J., Karg, M., Schmidt, M., Wirth, K.-E., Phys. Procedia 56, 125 (2014).CrossRefGoogle Scholar
Vora, P., Mumtaz, K., Todd, I., Hopkinson, N., Addit. Manuf. 7, 12 (2015).Google Scholar
Clare, A., Kennedy, A., “Additive Manufacturing,” US Patent 20160279703 A1 (2016).Google Scholar
Gasper, A.N.D., Catchpole-Smith, S., Clare, A.T., J. Mater. Process. Technol. 239, 230 (2017).CrossRefGoogle Scholar
Ardila, L.C., Garciandia, F., González-Díaz, J.B., Álvarez, P., Echeverria, A., Petite, M.M., Deffley, R., Ochoa, J., Phys. Procedia 56, 99 (2014).CrossRefGoogle Scholar
Seyda, V., Kaufmann, N., Emmelmann, C., Phys. Procedia 39, 425 (2012).CrossRefGoogle Scholar
Dadbakhsh, S., Hao, L., Scientific World J. 2014, 106129 (2014).CrossRefGoogle Scholar
Dadbakhsh, S., Hao, L., Jerrard, P.G.E., Zhang, D.Z., Powder Technol. 231, 112 (2012).CrossRefGoogle Scholar
Gu, D., Chang, F., Dai, D., J. Manuf. Sci. Eng. 137 (2), 021010 (2014).CrossRefGoogle Scholar
Gu, D., Wang, H., Chang, F., Dai, D., Yuan, P., Hagedorn, Y.-C., Meiners, W., Phys. Procedia 56, 108 (2014).CrossRefGoogle Scholar
Gu, D.D., Wang, H.Q., Dai, D.H., Yuan, P.P., Meiners, W., Poprawe, R., Scr. Mater. 96, 25 (2015).CrossRefGoogle Scholar
Gu, D., Wang, Z., Shen, Y., Li, Q., Li, Y., Appl. Surf. Sci. 255 (22), 9230 (2009).CrossRefGoogle Scholar