Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T10:42:52.811Z Has data issue: false hasContentIssue false

Science and Technology of Shape-Memory Alloys: New Developments

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The martensitic (also called displacive or diffusionless) transformation is a classical cooperative phenomenon in solids similar to ferromagnetism. Although the displacement of each atom is not large, the transformation results in a macroscopic change in shape, since all of the atoms move in the same direction in a domain or variant. As a result, unique properties arise, such as the shape-memory effect and superelasticity, whose characteristics are quite distinct from those of normal metals and alloys. Because of these unique properties, shape-memory alloys (SMAs) have been used as new functional materials for applications such as couplings, sensors, actuators, and antennas for cellular phones. In this issue of MRS Bulletin, we present an overview of recent progress in this field. In this introductory article, we discuss fundamental notions, such as the mechanism of the shape-memory effect, the martensitic transformation, and superelasticity, along with examples of applications and other important recent topics not treated in the following articles. It will be shown that progress in the science and technology of shape-memory alloys has been achieved by the side-by-side development of fundamentals and applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Chang, L.C. and Read, T.A., Trans. AIME 189 (1951) p. 47.Google Scholar
2.Buehler, W.J., Gilfrich, J.W., and Wiley, R.C., J. Appl. Phys. 34 (1963) p. 1475.CrossRefGoogle Scholar
3.Nishiyama, Z., Martensitic Transformation (Academic Press, New York, 1978).Google Scholar
4.Christian, J.W., The Theory of Transformations in Metals and Alloys (Pergamon Press, Oxford, 1965).Google Scholar
5.Wayman, C.M., Introduction to Crystallography of Martensitic Transformations (Macmillan, New York, 1964).Google Scholar
6.Warlimont, H. and Delaey, L., Prog. Mater. Sci. 18 (1974) p. 1.Google Scholar
7.Miyazaki, S., Ohmi, Y., Otsuka, K., and Suzuki, Y., J. Phys. (France) Colloque C4, Suppl. 12, Vol. 43 (1982) p. C4255.Google Scholar
8.Otsuka, K. and Wayman, C.M., eds., Shape Memory Materials (Cambridge University Press, Cambridge, 1998).Google Scholar
9.Harrison, J.D. and Hodgson, D.E., in Shape Memory Effects in Alloys, edited by Perkins, J. (Plenum Publishers, New York, 1975) p. 517.CrossRefGoogle Scholar
10.Banks, R., in Shape Memory Effects in Alloys, edited by Perkins, J. (Plenum Publishers, New York, 1975) p. 537.CrossRefGoogle Scholar
11.Wollants, P., de Bonte, M., Delaey, L., and Roos, J.R., Z. Metallkd. 70 (1979) p. 298.Google Scholar
12.Todoroki, T., Met. Technol. 54 (5) (1984) (in Japanese) p. 2.Google Scholar
13.Ohkata, H. and Tamura, H., in Materials for Smart Systems II, edited by George, E.P., Gotthardt, R., Otsuka, K., Trolier-McKinstry, S., and Wun-Fogle, M. (Mater. Res. Soc. Symp. Proc. 459, Pittsburgh, 1997) p. 345.Google Scholar
14.Uchino, K., in Shape Memory Materials, edited by Otsuka, K. and Wayman, C.M. (Cambridge University Press, Cambridge, 1998) p. 184.Google Scholar
15.Hosoda, Y., Fujie, M., and Kojima, Y., presented at the 1st Meeting of the Japan Robot Society, Tokyo, 1982, preprint, p. 213.Google Scholar
16.Ikuta, K., Tsukamoto, M., and Hirose, S., in Proc. IEEE Int. Conf. on Robotics and Automation (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1988) p. 427.Google Scholar
17.Rogers, C.A., Smart Materials, Structures, and Mathematical Issues (Technomic, Lancaster, PA, 1989).Google Scholar
18.Wei, Z.G., Sandstrom, R., and Miyazaki, S., J. Mater. Sci. 33 (1998) pp. 3743, 3763.Google Scholar
19.Schetky, L.McD., in Shape-Memory Materials and Phenomena—Fundamental Aspects and Applications, edited by Liu, C.T., Kunsmann, H., Otsuka, K., and Wuttig, M. (Mater. Res. Soc. Symp. Proc. 246, Pittsburgh, 1992) p. 299.Google Scholar
20.Marlinska, M., Balta, J.A., Michaud, V., Bidaux, J.-E., Manson, J.A., and Gotthardt, R., in Proc. ESOMAT-2000 (2002) in press.Google Scholar
21.Van Humbeeck, J., Stoiber, J., Delaey, L., and Gotthardt, R., Z. Metallkd. 86 (1995) p. 176.Google Scholar
22.Skorohod, V.V., Solonin, S.M., Martynova, I.F., and Klimenko, V.N., Sci. Sintering 22 (1990) p. 21.Google Scholar
23. Holemans' Jewelry Catalog 2001; Avenue Louise, 3–1050 Brussels, Belgium.Google Scholar
24.Otsuka, K., Sakamoto, H., and Shimizu, K., Acta Metall. 27 (1979) p. 585.CrossRefGoogle Scholar
25.Horikawa, H., in Proc. SMST99 (Shape Memory and Superelastic Technologies), edited by Van Moorleghem, W., Besselink, P., and Aslandis, D. (Shape Memory and Superelastic Technologies Europe, Antwerp, 1999) p. 256.Google Scholar
26.Van Humbeeck, J., Mater. Sci. Eng., A 273–275 (1999) p. 134.CrossRefGoogle Scholar
27.Schetky, L.McD., Mater. Sci. Forum 327–328 (2000) p. 9.Google Scholar
28.Massalski, T.B., Okamoto, H., Subramanian, P.R., and Kacprzak, L., eds., Binary Alloy Phase Diagrams, 2nd ed., Vol. 3 (ASM International, Materials Park, OH, 1990) p. 2874.Google Scholar
29.Honma, T., Matsumoto, T., Shugo, Y., and Nishida, M., Research Report of the Laboratory of Nuclear Science, Tohoku University 12 (Tohoku University, Sendai, Japan, 1979) p. 183.Google Scholar
30.Kudoh, Y., Tokonami, M., Miyazaki, S., and Otsuka, K., Acta Metall. 33 (1985) p. 2049.CrossRefGoogle Scholar
31.Hara, T., Ohba, T., Okunishi, E., and Otsuka, K., Mater. Trans., JIM 38 (1997) p. 11.Google Scholar
32.Saburi, T., Komatsu, K., Nenno, S., and Watanabe, Y., J. Less-Common Met. 118 (1986) p. 217.CrossRefGoogle Scholar
33.Nam, T.Y., Saburi, T., and Shimizu, K., Trans. JIM 31 (1990) p. 959.CrossRefGoogle Scholar
34.Tadaki, T., Nakata, Y., Shimizu, K., and Otsuka, K., Mater. Trans., JIM 27 (1986) p. 731.Google Scholar
35.Saburi, T., Nenno, S., and Fukuda, T., J. Less-Common Met. 125 (1986) p. 157.CrossRefGoogle Scholar
36.Hara, T., Ohba, T., and Otsuka, K., Mater. Trans., JIM 38 (1997) p. 277.CrossRefGoogle Scholar
37.Nishida, M., Wayman, C.M., and Honma, T., Metall. Trans. A 17A (1986) p. 1505.CrossRefGoogle Scholar
38.Horikawa, H., Tamura, H., Okamoto, Y., Hamanaka, H., and Miura, F., in Proc. Int. Meet. Adv. Mater., Vol. 9, edited by Otsuka, K. and Shimizu, K. (Materials Research Society, Pittsburgh, PA, 1989) p. 195.Google Scholar
39.Zhang, J., PhD thesis, University of Tsukuba, 2000.Google Scholar
40.Wechsler, M.S., Lieberman, D.S., and Read, T.A., Trans. AIME 197 (1953) p. 1503;Google Scholar
Lieberman, D.S., Wechsler, M.S., and Read, T.A., J. Appl. Phys. 26 (1955) p. 473.CrossRefGoogle Scholar
41.Bowles, J.S. and Mackenzie, J.K., Acta Metall. 2 (1954) pp. 129, 138, 224.CrossRefGoogle Scholar
42.Christian, J.W., J. Inst. Met. 84 (19551956) p. 386.Google Scholar
43.Otsuka, K., Mater. Sci. Forum 56–58 (1990) p. 393.CrossRefGoogle Scholar
44.Nakanishi, N., Prog. Mater. Sci. 24 (1979) p. 143.Google Scholar
45.Planes, A. and Manosa, L., Solid-State Phys. 55 (2001) p. 159.CrossRefGoogle Scholar
46.Shapiro, S.M., Larse, J.Z., Noda, Y., Moss, S.C., and Tanner, L.E., Phys. Rev. Lett. 57 (1986) p. 3199.Google Scholar
47.Zener, C., Phys. Rev. 71 (1947) p. 846.CrossRefGoogle Scholar
48.Ren, X. and Otsuka, K., Scripta Mater. 38 (1998) p. 1669.CrossRefGoogle Scholar
49.Tanner, L.E., Schryvers, D., and Shapiro, S.M., Mater. Sci. Eng., A A127 (1990) p. 205.Google Scholar
50.Lindgard, P.A. and Mouritsen, O.G., Phys. Rev. Lett. 57 (1986) p. 2458.CrossRefGoogle Scholar
51.Krumhansl, J.A., Solid State Commun. 84 (1992) p. 251.Google Scholar
52.Barsch, G.R., Mater. Sci. Forum 327–328 (2000) p. 367.Google Scholar
53.Kakeshita, T., Kuroiwa, K., Shimizu, K., Ikeda, T., Yamagishi, A., and Date, M., Mater. Trans., JIM 34 (1993) p. 423.Google Scholar
54.Kakeshita, T., Saburi, T., and Shimizu, K., Mater. Sci. Eng., A 273–275 (1999) p. 21.Google Scholar
55.Abe, H., Ohshima, K., Suzuki, T., Hoshino, S., and Kakurai, K., Phys. Rev. B 49 (1994) p. 3739.CrossRefGoogle Scholar
56.Otsuka, K., Ren, X., and Takeda, T., Scripta Mater. 45 (2001) p. 145.Google Scholar
57.Khachaturyan, A.G. and Shatalov, G.A., Sov. Phys. JETP 29 (1969) p. 557.Google Scholar
58.Wang, Y. and Khachaturyan, A.G., Acta Mater. 45 (1997) p. 759.CrossRefGoogle Scholar
59.Jin, Y.M., Artemev, A., and Khachaturyan, A.G., Acta Mater. 49 (2001) p. 2309.CrossRefGoogle Scholar
60.Suzuki, T., Shimono, M., and Takeno, S., Phys. Rev. Lett. 82 (1999) p. 1474.CrossRefGoogle Scholar
61.Zhao, G.L. and Harmon, B.N., Phys. Rev. B 48 (1993) p. 2031.Google Scholar
62.Ye, Y.Y., Chan, C.T., and Ho, K.M., Phys. Rev. B 56 (1997) p. 3678.Google Scholar
63.Ohba, T., Emura, Y., and Otsuka, K., Mater. Trans., JIM 33 (1992) p. 29.Google Scholar