Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T12:54:44.596Z Has data issue: false hasContentIssue false

Scanning Probe Microscopy of Thin Films

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Atomic force microscopy (AFM) was invented in 1986 by Binnig, Quate, and Gerber as “a new type of microscope capable of investigating surfaces of insulators on an atomic scale.” Stemming from developments in scanning tunneling microscopy (STM), it became possible to image insulators, organic and biological molecules, salts, glasses, and metal oxides — some under a variety of conditions, e.g., ambient pressure, in aqueous or cryogenic liquids, etc. In 1987, Mate and co-workers introduced a new application for AFM where atomic-scale frictional forces could be measured. Likewise, in 1989, Burnham and Colton used the AFM to measure the surface forces and nano-mechanical properties of materials. Today, there are many examples of using AFM as a high-resolution profilometer, surface force probe, and nanoindentor. Several new imaging techniques have been introduced; each depending on the type of force measured, e.g., magnetic, electrostatic, and capacitative. Because of the diverse nature of the field and instrumentation, the names “scanned probe microscopy” and “XFM” (where X stands for the force being measured, e.g., MFM is magnetic force microscopy) have been adopted.

Type
Quantitative Analysis of Thin Films
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Binnig, G., Quate, C.F., and Gerber, C., Phys. Rev. Lett. 56 (1986) p. 930.CrossRefGoogle Scholar
2.Mate, C.M., McClelland, G.M., Erlandsson, R., and Chiang, S., Phys. Rev. Lett. 59 (1987) p. 1942.CrossRefGoogle Scholar
3.Burnham, N.A. and Colton, R.J., J. Vac. Sci. Technol. A 7 (1989) p. 2906.CrossRefGoogle Scholar
4.Wickramasinghe, H.K., Sci. Am. (October, 1989) p. 98.CrossRefGoogle Scholar
5.Martin, Y., Williams, C.C., and Wickramasinghe, H.K., J. Appl. Phys. 61 (1989) p. 4723. McClelland, G.M., Erlandsson, R., and Chiang, S., in Review of Progress in Quantitative Non-Destructive Evaluation 6B, edited by Thompson, D.O. and Chimenti, D.E. (Plenum, New York, 1987) p. 1307.CrossRefGoogle Scholar
6.Albrecht, T.R., Grütter, P., Horne, D., and Rugar, D., J. Appl. Phys. 69 (1991) p. 668.CrossRefGoogle Scholar
7.Dürig, U., Züger, O., and Stalder, A., J. Appl. Phys. 72 (1992) p. 1778.CrossRefGoogle Scholar
8.Meyer, E., Heinzelmann, H., Grütter, P., Jung, T., Weisskopf, T., Hidber, H-R., Lapka, R., Rudin, H., and Güntherodt, H-J., J. Microscopy 151 (1988) p. 269.CrossRefGoogle Scholar
9.Weisenhorn, A.L., Hansma, P.K., Albrecht, T.R., and Quate, C.F., Appl. Phys. Lett. 54 (1989) p. 2651.CrossRefGoogle Scholar
10. For recent reviews see, for example, Hansma, P.K., Elings, V.B., Marti, O., and Bracker, C.E., Science 242 (1988) p. 157; Wickramasinghe, H.K., Sci. Am. (October, 1989); Heinzelmann, H., Meyer, E., Rudin, H. , and Güntherodt, H-J. , in Scanning Tunneling Microscopy and Related Methods, edited by Behmet, R.J. et al. (Kluwer Academic Publishers, 1990); Rugar, D. and Hansma, P., Phys. Today, October (1990); Meyer, E. and Heinzelmann, H. in Scanning Tunneling Microscopy and Related Techniques, edited by Wiesendanger, R. and Güntherodt, H-J., (Springer Verlag, Berlin, 1992); Frommer, J. and Meyer, E., J. Phys. Cond. Mater. S1 (3) (1991); Meyer, E., Progress in Surface Science (1992).CrossRefGoogle Scholar
11.Burnham, N.A. and Colton, R.J., in Scanning Tunneling Microscopy: Theory and Application, edited by Bonnell, D., (VCH Publishers, New York, in press).Google Scholar
12.Meyer, E., Haefke, H., Anderson, O., and Bange, K., Glastechnische Berichte (1992).Google Scholar
13.Grütter, P., Zimmermann-Edling, W., and Brodbeck, D., Appl. Phys. Lett. 60 (1992) p. 2741.CrossRefGoogle Scholar
14.Meyer, E., Güntherodt, H-J., Haefke, H., and Krohn, M., Europhys. Lett. 15 (1991) p. 319; Haefke, H., Meyer, E., Güntherodt, H-J., Gerth, G., and Krohn, M., J. Mag. Sci. 35 (1991) p. 290.CrossRefGoogle Scholar
15.Blunier, S., Zogg, H., Tiwari, A.N., Overney, R.M., Haefke, H., Buffat, P., and Kostorz, G., Phys. Rev. Lett. (1992), in press.Google Scholar
16.Meyer, G. and Amer, N., Appl. Phys. Lett. 56 (1990) p. 2100.CrossRefGoogle Scholar
17.Giessibl, F.J. and Binnig, G., Ultramicroscopy (1992), in press.Google Scholar
18.Meyer, E., Heinzelmann, H., Rudin, H., and Güntherodt, H-J., Z. Phys. B 79 (1990) p. 3.CrossRefGoogle Scholar
19.Bourdieu, L., Silberzan, P., and Chatenay, D., Phys. Rev. Lett. 67 (1991) p. 2029.CrossRefGoogle Scholar
20.Zhong, W., Overney, G., and Tomanek, D., Europhys. Lett. 15 (1991) p. 49.CrossRefGoogle Scholar
21.Landman, U., Luedtke, W.D., Burnham, N.A., and Colton, R.J., Science 248 (1990) p. 454.CrossRefGoogle Scholar
22.Feenstra, R.M., Stroscio, J.A., Tersoff, J., Fein, A., Phys. Rev. Lett. 58 (1990) p. 1192.CrossRefGoogle Scholar
23.Berndt, R., Baratoff, A., and Gimzewski, J.K., in Scanning Tunneling Microscopy and Related Methods, edited by Behm, R.J.et al. (Kluwer Academic Publishers, 1990).Google Scholar
24.Anselmetti, D., Gerber, C., Michel, B., Güntherodt, H-J., and Rohrer, H., Rev. Sci. Instrum. 63 (1992) p. 3003.CrossRefGoogle Scholar
25.Neubauer, G., Cohen, S.R., McClelland, G.M., Horne, D., and Mate, C.M., Rev. Sci. Instrum. 61 (1990) p. 2296.CrossRefGoogle Scholar
26.Meyer, G. and Amer, N.M., Appl. Phys. Lett. 56 (1990) p. 2100; Marti, O., Colchero, J. and Mlynek, J., Nanotechnol. 1 (1990) p. 141.CrossRefGoogle Scholar
27.Meyer, E., Overney, R., Brodbeck, D., Howald, L., Lüthi, R., Frommer, J., and Güntherodt, H-J., in Fundamentals in Friction, edited by Singer, I. and Pollock, H. (Kluwer Academic Publisher, 1992); Meyer, E., Overney, R. , Frommer, J., Brodbeck, D., Howald, L., Lüthi, R., Güntherodt, H-J., Wolter, O., Fujihira, M., Takano, H., and Gotoh, Y., Thin Solid Films, in press.Google Scholar
28.Rabinowitz, E. and Tabor, D., Proc. R. Soc. London, Ser. A 208 (1951) p. 455.Google Scholar
29.Hsu, S.M., MRS Bulletin XVI (10) (1991) p. 54.CrossRefGoogle Scholar
30.Meyer, E., Overney, R., Brodbeck, D., Howald, L., Lüthi, R., Frommer, J., and Güntherodt, H-J., Phys. Rev. Lett. (1992), in press.Google Scholar
31.Overney, R., Meyer, E., Frommer, J., Brodbeck, D., Howald, L., Lüthi, R., Güntherodt, H-J., Fujihira, M., Takano, H., and Gotoh, Y., Nature (1992), in press.Google Scholar
32.Scanning Tunneling Microscopy and Related Techniques, edited by Wiesendanger, R. and Güntherodt, H-J. (Springer Verlag, Berlin, 1992).Google Scholar
33.Israelachvili, J.N., Intermolecular and Surface Forces (Academic Press, New York, 1986) p. 153.Google Scholar
34.Burnham, N.A., Colton, R.J., and Pollock, H.M., Nanotechnol., in press.Google Scholar
35.Hartmann, U., Phys. Rev. B 42 (1990) p. 1541.CrossRefGoogle Scholar
36.Weisenhorn, A.L., Maivald, P., Butt, H-J., and Hansma, P.K., Phys. Rev. B 45 (1992) p. 11226.CrossRefGoogle Scholar
37.Burnham, N.A., Colton, R.J., and Pollock, H.M., J. Vac. Sci. Technol. A 9 (1991) p. 2548.CrossRefGoogle Scholar
38.Burnham, N.A., Colton, R.J., and Pollock, H.M., Phys. Rev. Lett. 69 (1992) p. 144.CrossRefGoogle Scholar
39.Mate, C.M., Lorenz, M.R., and Novotny, V.J., J. Chem Phys. 90 (1989) p. 7550.CrossRefGoogle Scholar
40.Burnham, N.A., Dominguez, D.D., Mowery, R.L., and Colton, R.J., Phys. Rev. Lett. 64 (1990) p. 1931.CrossRefGoogle Scholar
41.Horn, R.G., Israelachvili, J.N., and Pribac, F., J. Coll. Interface. Sci. 115 (1987) p. 480.CrossRefGoogle Scholar
42.Sperling, G., thesis, Karlsruhe Technische Hochschule (1964); Johnson, K.L. , Kendall, K., and Roberts, A.D., Proc. R. Soc. London, Ser. A. 324 (1971) p. 301.Google Scholar
43.Derjaguin, B.V., Muller, V.M., and Toporov, Y.P., J. Coll. Interface Sci. 53 (1975) p. 314.CrossRefGoogle Scholar
44.Hertz, H., J. Reine Angew. Math. 92 (1882) p. 156.CrossRefGoogle Scholar
45.Brooks, C.A., Properties of Diamond (Academic Press, London, 1979).Google Scholar
46.Pethica, J.B. and Oliver, W.C., Physica Scripta T19 (1987) p. 61.CrossRefGoogle Scholar
47.Pethica, J.B. and Sutton, A.P., J. Vac. Sci. Technol. A 6 (1988) p. 2494.CrossRefGoogle Scholar
48.Smith, J.R., Bozzolo, G., Banerjea, A., and Ferrante, J., Phys. Rev. Lett. 63 (1989) p. 7269.Google Scholar
49.Bryant, P.J., Kim, H.S., Deeken, R.H., and Cheng, Y.C., J. Vac. Sci. Technol. A 8 (1990) p. 3502.CrossRefGoogle Scholar
50.Miller, G.L., Griffith, J.E., Wagner, E.R., and Grigg, D.A., Rev. Sci. Instrum. 62 (1991) p. 705.CrossRefGoogle Scholar
51.Joyce, S.A. and Houston, J.E., Rev. Sci. Instrum. 62 (1991) p. 710.CrossRefGoogle Scholar
52.Basedow, R.W. and Cocks, T.D., J. Phys. E: Sci. Instrum. 13 (1980) p. 840.CrossRefGoogle Scholar
53.van de Leemput, L.E.C., Rongen, P.H.H., Timmerman, B.H., and van Kempen, H., Rev. Sci. Instrum. 62 (1991) p. 989.CrossRefGoogle Scholar
54.Vieira, S., Heras, C. De Las, and Bourgeal, S., Ferroelectrics 81 (1988) p. 327.CrossRefGoogle Scholar
55.Pollock, H.M., Shufflebottom, P., and Skinner, J., J. Phys. D: Appl. Phys. 10 (1977) p. 127; Pollock, H.M., J. Phys. D: Appl. Phys. 11 (1978) p. 39.CrossRefGoogle Scholar
56.Hoh, J.H., Cleveland, J.P., Prater, C.B., Revel, J.P., and Hansma, P.K., J. Am. Chem. Soc. 114 (1992) p. 4917.CrossRefGoogle Scholar
57.Sneddon, I.N., Int. J. Eng. Sci. 3 (1965) p. 47.CrossRefGoogle Scholar
58.Pharr, G.M., Oliver, W.C., Brotzen, F.R., J. Mater. Res. 7 (1992) p. 613.CrossRefGoogle Scholar
59.Hues, S.M., Draper, C.F., and Colton, R.J., to be published.Google Scholar
60.Pethica, J.B., Hutchings, R., and Oliver, W.C., Philos. Mag. A 48 (1983) p. 593.CrossRefGoogle Scholar
61.Gane, N., Proc. R. Soc. London, Ser. A 317 (1970) p. 367.Google Scholar
62.Pethica, J.D. and Tabor, D., Surf. Sci. 89 (1979) p. 182.CrossRefGoogle Scholar
63.Briggs, G.A.D., Rowe, J.M., Sinton, A.M., and Spenser, D.S., Proc. IEEE Ultrason. Symp. (1988) p. 743.Google Scholar
64.Castagnede, B., Jenkins, J.T., and Sachse, W., J. Appl. Phys. (1990) p. 2753.Google Scholar
65.Heil, J., Wesner, J., and Grill, W., J. Appl. Phys. 64 (1988) p. 1939.CrossRefGoogle Scholar
66.Rohrbeck, W., Chilla, E., Fröhlich, H-J., and Riedel, J., Appl. Phys. A 52 (1991) p. 344.CrossRefGoogle Scholar
67.Harrison, J.A., Colton, R.J., White, C.T., and Brenner, D.W., Surf. Sci. 271 (1992) p. 57.CrossRefGoogle Scholar
68.Rafii-Tabar, H., Pethica, J.B., and Sutton, A.P., in Thin Films: Stresses and Mechanical Properties III, edited by Nix, W.D., Bravman, J.C., Arzt, E., and Freund, L.B. (Mater. Res. Soc. Symp. Proc. 239, Pittsburgh, PA, 1991) p. 313.Google Scholar
69.Harrison, J.A., Colton, R.J., White, C.T., and Brenner, D.W., in Thin Films: Stresses and Mechanical Properties III, edited by Nix, W.D., Bravman, J.C., Arzt, E., and Freund, L.B. (Mater. Res. Soc. Symp. Proc. 239, Pittsburgh, PA, 1991) p. 573.Google Scholar
70.Harrison, J.A., Brenner, D.W., White, C.T., and Colton, R.J., Thin Solid Films 206 (1991) p. 213.CrossRefGoogle Scholar
71.Nieminen, J.A., Sutton, A.P., and Pethica, J.B., Acta. Metall. (1992), in press.Google Scholar
72.Harrison, J.A., White, C.T., Colton, R.J., and Brenner, D.W., Phys. Rev. B 46 (1992), in press.Google Scholar
73.Industrial Minerals and Rocks, edited by Gillson, J.L. (American Institute of Mining, Metallurgical, and Petroleum Engineering, 1960) p. 551.Google Scholar
74.Handbook of Materials Science, Vol. III, edited by Lynch, C.T. (CRC Press, Cleveland, OH, 1975) p. 160.Google Scholar