Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-27T21:22:47.784Z Has data issue: false hasContentIssue false

Scanning probe microscopy of solar cells: From inorganic thin films to organic photovoltaics

Published online by Cambridge University Press:  12 July 2012

James R. O’Dea
Affiliation:
Cornell University; [email protected]
Louisa M. Brown
Affiliation:
Cornell University; [email protected]
Nikolas Hoepker
Affiliation:
Cornell University; [email protected]
John A. Marohn
Affiliation:
Cornell University; [email protected]
Sascha Sadewasser
Affiliation:
International Iberian Nanotechnology Laboratory, Braga, Portugal; [email protected]
Get access

Abstract

Scanning probe microscopy (SPM) has made significant contributions to our understanding of the sub-processes underlying photovoltaic action. These techniques allow local investigation of the electrical and optical properties of a material. Spatially resolved measurements of surface photovoltage and photocurrent have been particularly useful in understanding charge generation and separation. In thin-film inorganic solar cells, for example, Kelvin probe force microscopy (KPFM) has revealed that charge separation does not occur at a heterojunction as expected, but instead occurs at a homojunction buried ∼50 nm within the absorbing layer. In organic photovoltaics, submicron maps of photocurrent have contributed to the understanding of the interplay between processing conditions, blend morphology, and device performance. Such functional imaging distinguishes SPM from complementary structural characterization techniques. Our goal in this article is to provide the materials science community with an appreciation for the capabilities, considerations, and limitations associated with SPM studies of solar cell materials and devices. Highlighted techniques include scanning tunneling microscopy, photoconductive atomic force microscopy, near-field scanning optical microscopy, KPFM, and time-resolved electric force microscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.U.S. Energy Information Administration, Annual Energy Review, 2011.Google Scholar
2.European Photovoltaic Industry Association, Global Market Outlook for Photovoltaics, 2012.Google Scholar
3.U.S. Energy Information Administration, Annual Photovoltaic Module/Cell Manufacturers Survey, 2010.Google Scholar
4.Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D., Prog. Photovoltaics Res. Appl. 20, 12 (2012).Google Scholar
5.Azzopardi, B., Emmott, C.J.M., Urbina, A., Krebs, F.C., Mutale, J., Nelson, J., Energy Environ. Sci. 4, 3741 (2011).Google Scholar
6.Green, M.A., Emery, K., King, D.L., Hishikawa, Y., Warta, W., Prog. Photovoltaics Res. Appl. 15, 35 (2007).Google Scholar
7.Forrest, S.R., MRS Bull. 30, 28 (2005).CrossRefGoogle Scholar
8.Silveira, W.R., Muller, E.M., Ng, T.N., Dunlap, D.H., Marohn, J.A., in Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale, Kalinin, S.V., Gruverman, A., Eds. (Springer Verlag, NY, 2007), vol. II, pp. 788830.CrossRefGoogle Scholar
9.Pingree, L.S.C., Reid, O.G., Ginger, D.S., Adv. Mater. 21, 19 (2009).CrossRefGoogle Scholar
10.Zorn, M., Weber, S.A.L., Tahir, M.N., Tremel, W., Butt, H., Berger, R., Zentel, R., Nano Lett. 10, 2812 (2010).Google Scholar
11.Choi, J.J., Wenger, W., Hoffman, R., Lim, Y.-F., Luria, J., Jasieniak, J., Marohn, J.A., Hanrath, T., Adv. Mater. 23, 3144 (2011).CrossRefGoogle Scholar
12.Jiang, C.-S., Hasoon, F.S., Moutinho, H.R., Al-thani, H.A., Romero, M.J., Al-jassim, M.M., Appl. Phys. Lett. 82, 127 (2003).CrossRefGoogle Scholar
13.Cojocaru-Miredin, O., Choi, P., Wuerz, R., Raabe, D., Appl. Phys. Lett. 98, 103504 (2011).Google Scholar
14.Brabec, C., Sariciftci, N., Hummelen, J., Adv. Funct. Mater. 11, 15 (2001).Google Scholar
15.Mayer, A.C., Scully, S.R., Hardin, B.E., Rowell, M.W., McGehee, M.D., Mater. Today 10, 28 (2007).CrossRefGoogle Scholar
16.Peumans, P., Yakimov, A., Forrest, S.R., J. Appl. Phys. 93, 3693 (2003).Google Scholar
17.Anthony, J.E., Chem. Rev. 106, 5028 (2006).CrossRefGoogle Scholar
18.Hains, A.W., Liang, Z., Woodhouse, M.A., Gregg, B.A., Chem. Rev. 110, 6689 (2010).Google Scholar
19.Gregg, B.A., J. Phys. Chem. B 107, 4688 (2003).Google Scholar
20.Gregg, B., Hanna, M., J. Appl. Phys. 93, 3605 (2003).CrossRefGoogle Scholar
21.Bredas, J.-L., Cornil, J., Heeger, A.J., Adv. Mater. 8, 447 (1996).CrossRefGoogle Scholar
22.Alvarado, S., Seidler, P., Lidzey, D., Bradley, D., Phys. Rev. Lett. 81, 1082 (1998).Google Scholar
23.Zerweck, U., Loppacher, C., Otto, T., Grafstrom, S., Eng, L., Phys. Rev. B 71, 125424 (2005).Google Scholar
24.Gross, L., Mohn, F., Liljeroth, P., Repp, J., Giessibl, F.J., Meyer, G., Science 324, 1428 (2009).CrossRefGoogle Scholar
25.Nony, L., Foster, A., Bocquet, F., Loppacher, C., Phys. Rev. Lett. 103, 036802 (2009).Google Scholar
26.Sadewasser, S., Jelinek, P., Fang, C.-K., Custance, O., Yamada, Y., Sugimoto, Y., Abe, M., Morita, S., Phys. Rev. Lett. 103, 266103 (2009).CrossRefGoogle Scholar
27.Spadafora, E.J., Demadrille, R., Ratier, B., Grevin, B., Nano Lett. 10, 3337 (2010).Google Scholar
28.Giridharagopal, R., Rayermann, G.E., Shao, G., Moore, D.T., Reid, O.G., Tillack, A.F., Masiello, D.J., Ginger, D.S., Nano Lett. 12, 893 (2012).CrossRefGoogle Scholar
29.Mönig, H., Smith, Y., Caballero, R., Kaufmann, C., Lauermann, I., Lux-Steiner, M., Sadewasser, S., Phys. Rev. Lett. 105, 116802 (2010).Google Scholar
30.Guide, M., Dang, X.-D., Nguyen, T.-Q., Adv. Mater. 23, 2313 (2011).Google Scholar
31.Brenner, T.J.K., Mcneill, C.R., J. Phys. Chem. C 115, 19364 (2011).CrossRefGoogle Scholar
32.Coffey, D.C., Ginger, D.S., Nat. Mater. 5, 735 (2006).Google Scholar
33.Breymesser, A., Schlosser, V., Peiro, D., Voz, C., Bertomeu, J., Andreu, J., Summhammer, J., Sol. Energy Mater. Sol. Cells 66, 171 (2001).CrossRefGoogle Scholar
34.Glatzel, T., Fuertes Marrón, D., Schedel-Niedrig, T., Sadewasser, S., Lux-Steiner, M.C., Appl. Phys. Lett. 81, 2017 (2002).Google Scholar
35.Jiang, C.-S., Moutinho, H.R., Friedman, D.J., Geisz, J.F., Al-Jassim, M.M., J. Appl. Phys. 93, 10035 (2003).Google Scholar
36.Jiang, C.-S., Friedman, D.J., Geisz, J.F., Moutinho, H.R., Romero, M.J., Al-Jassim, M.M., Appl. Phys. Lett. 83, 1572 (2003).Google Scholar
37.Visoly-Fisher, I., Cohen, S.R., Cahen, D., Ferekides, C.S., Appl. Phys. Lett. 83, 4924 (2003).Google Scholar
38.Ptak, A.J., France, R., Jiang, C.-S., Reedy, R.C., J. Vac. Sci. Technol., B 26, 1053 (2008).CrossRefGoogle Scholar
39.Mainz, R., Streicher, F., Abou-ras, D., Sadewasser, S., Klenk, R., Lux-steiner, M.C., Phys. Status Solidi A 206, 1017 (2009).Google Scholar
40.Dante, M., Peet, J., Nguyen, T.-Q., J. Phys. Chem. C 112, 7241 (2008).Google Scholar
41.Dante, M., Garcia, A., Nguyen, T.-Q., J. Phys. Chem. C 113, 1596 (2009).CrossRefGoogle Scholar
42.Binnig, G., Rohrer, H., Gerber, C., Weibel, E., Phys. Rev. Lett. 49, 57 (1982).CrossRefGoogle Scholar
43.Alvarado, S., Barth, S., Bässler, H., Scherf, U., van der Horst, J.-W., Bobbert, P., Michels, M., Adv. Funct. Mater. 12, 117 (2002).Google Scholar
44.Kemerink, M., Alvarado, S., Müller, P., Koenraad, P., Salemink, H., Wolter, J., Janssen, R., Phys. Rev. B 70, 045202 (2004).CrossRefGoogle Scholar
45.Kemerink, M., Offermans, P., Van duren, J., Koenraad, P., Janssen, R., Salemink, H., Wolter, J., Phys. Rev. Lett. 88, 096803 (2002).Google Scholar
46.de Lozanne, A.L., Elrod, S.A., Quate, C.F., Phys. Rev. Lett. 54, 2433 (1985).CrossRefGoogle Scholar
47.Azulay, D., Millo, O., Savir, E., Conde, J.P., Balberg, I., Phys. Rev. B 80, 245312 (2009).Google Scholar
48.Binnig, G., Quate, C., Gerber, C., Phys. Rev. Lett. 56, 930 (1986).CrossRefGoogle Scholar
49.Nilsson, S., Bernasik, A., Budkowski, A., Moons, E., Marcomolecules, 40, 8291, (2007).Google Scholar
50.Kelley, T., Granstrom, E., Frisbie, C., Adv. Mater. 11, 261 (1999).Google Scholar
51.Azulay, D., Balberg, I., Chu, V., Conde, J., Millo, O., Phys. Rev. B 71, 113304 (2005).Google Scholar
52.Azulay, D., Millo, O., Balberg, I., Schock, H.-W., Visoly-Fisher, I., Cahen, D., Sol. Energy Mater. Sol. Cells 91, 85 (2007).CrossRefGoogle Scholar
53.Reid, O.G., Munechika, K., Ginger, D.S., Nano Lett. 8, 1602 (2008).CrossRefGoogle Scholar
54.Pingree, L.S.C., Reid, O.G., Ginger, D.S., Nano Lett. 9, 2946 (2009).Google Scholar
55.Coffey, D.C., Reid, O.G., Rodovsky, D.B., Bartholomew, G.P., Ginger, D.S., Nano Lett. 7, 738 (2007).Google Scholar
56.Reid, O.G., Xin, H., Jenekhe, S.A., Ginger, D.S., J. Appl. Phys. 108, 084320 (2010).CrossRefGoogle Scholar
57.Dang, X.-D., Tamayo, A.B., Seo, J., Hoven, C.V., Walker, B., Nguyen, T.-Q., Adv. Funct. Mater. 20, 3314 (2010).Google Scholar
58.Xin, H., Reid, O.G., Ren, G., Kim, F.S., Ginger, D.S., Jenekhe, S.A., ACS Nano 4, 1861 (2010).CrossRefGoogle Scholar
59.Betzig, E., Trautman, J.K., Harris, T.D., Weiner, J.S., Kostelak, R.L., Science 251, 1468 (1991).CrossRefGoogle Scholar
60.Cadby, A., Khalil, G., Fox, A.M., Lidzey, D.G., J. Appl. Phy. 103, 093715 (2008).Google Scholar
61.Gutay, L., Pomraenke, R., Lienau, C., Bauer, G.H., Phys. Status Solidi A 206, 1005 (2009).Google Scholar
62.McNeill, C.R., Dastoor, P.C., J. Appl. Phys. 99, 033502 (2006).Google Scholar
63.Mukhopadhyay, S., Ramachandra, S., Narayan, K.S., J. Phys. Chem. C 115, 17184 (2011).Google Scholar
64.Ahn, Y., Dunning, J., Park, J., Nano Lett. 5, 1367 (2005).CrossRefGoogle Scholar
65.Kabra, D., Narayan, K., Adv. Mater. 19, 1465 (2007).CrossRefGoogle Scholar
66.Martin, Y., Abraham, D., Wickramasinghe, H., Appl. Phys. Lett. 52, 1103 (1988).CrossRefGoogle Scholar
67.Nonnenmacher, M., O’Boyle, M., Wickramasinghe, H., Appl. Phys. Lett. 58, 2921 (1991).Google Scholar
68.Sadewasser, S., Glatzel, T., Eds., Kelvin Probe Force Microscopy: Measuring and Compensating Electrostatic Forces, Springer Series in Surface Sciences (Springer, NY, 2011).Google Scholar
69.Kikukawa, A., Hosaka, S., Imura, R., Appl. Phys. Lett. 66, 3510 (1995).Google Scholar
70.Albrecht, T.R., Grütter, P., Horne, D., Rugar, D., J. Appl. Phys. 69, 668 (1991).CrossRefGoogle Scholar
71.Maturova, K., Kemerink, M., Wienk, M., Charrier, D., Janssen, R., Adv. Funct. Mater. 19, 1379 (2009).Google Scholar
72.Hoppe, H., Glatzel, T., Niggemann, M., Hinsch, A., Lux-Steiner, M.C., Sariciftci, N.S., Nano Lett. 5, 269 (2005).CrossRefGoogle Scholar
73.Chiesa, M., Bürgi, L., Kim, J.S., Shikler, R., Friend, R.H., Sirringhaus, H., Nano Lett. 5, 559 (2005).Google Scholar
74.Palermo, V., Otten, M.B.J., Liscio, A., Schwartz, E., de Witte, P.A.J., Castriciano, M.A., Wienk, M.M., Nolde, F., De Luca, G., Cornelissen, J.J.L.M., Janssen, R.A.J., Müllen, K., Rowan, A.E., Nolte, R.J.M., Samori, P., J. Am. Chem. Soc. 130, 14605 (2008).CrossRefGoogle Scholar
75.Reid, O.G., Rayermann, G.E., Coffey, D.C., Ginger, D.S., J. Phys. Chem. C 114, 20672 (2010).CrossRefGoogle Scholar
76.Snaith, H., Arias, A., Morteani, A., Silva, C., Friend, R., Nano Lett. 2, 1353 (2002).Google Scholar
77.McNeill, C.R., Frohne, H., Holdsworth, J.L., Dastoor, P.C., Nano Lett. 4, 2503 (2004).CrossRefGoogle Scholar
78.Groves, C., Reid, O.G., Ginger, D.S., Acc. Chem. Res. 43, 612 (2010).Google Scholar
79.Sadewasser, S., Glatzel, T., Rusu, M., Jäger-Waldau, A., Lux-Steiner, M.C., Appl. Phys. Lett. 80, 2979 (2002).Google Scholar
80.McDaniel, A.A., Hsu, J.W.P., Gabor, A.M., Appl. Phys. Lett. 70, 3555 (1997).Google Scholar
81.Sadewasser, S., Glatzel, T., Schuler, S., Nishiwaki, S., Kaigawa, R., Lux-Steiner, M.C., Thin Solid Films 431432, 257 (2003).Google Scholar
82.Jiang, C.-S., Noufi, R., Abushama, J.A., Ramanathan, K., Moutinho, H.R., Pankow, J., Al-Jassim, M.M., Appl. Phys. Lett. 84, 3477 (2004).Google Scholar
83.Jiang, C.-S., Noufi, R., Ramanathan, K., Abushama, J.A., Moutinho, H.R., Al-Jassim, M.M., Appl. Phys. Lett. 85, 2625 (2004).Google Scholar
84.Hanna, G., Glatzel, T., Sadewasser, S., Ott, N., Strunk, H., Rau, U., Werner, J., Appl. Phys. A 82, 1 (2006).Google Scholar
85.Siebentritt, S., Sadewasser, S., Wimmer, M., Leendertz, C., Eisenbarth, T., Lux-Steiner, M., Phys. Rev. Lett. 97, 146601 (2006).Google Scholar
86.Hafemeister, M., Siebentritt, S., Albert, J., Lux-Steiner, M.C., Sadewasser, S., Phys. Rev. Lett. 104, 196602 (2010).Google Scholar
87.Baier, R., Abou-Ras, D., Rissom, T., Lux-Steiner, M.C., Sadewasser, S., Appl. Phys. Lett. 99, 172102 (2011).CrossRefGoogle Scholar
88.Fuertes Marrón, D., Sadewasser, S., Meeder, A., Glatzel, T., Lux-Steiner, M., Phys. Rev. B 71, 033306 (2005).Google Scholar
89.Jiang, C.-S., Noufi, R., Ramanathan, K., Moutinho, H.R., Al-Jassim, M.M., J. Appl. Phys. 97, 053701 (2005).Google Scholar
90.Rusu, M., Glatzel, T., Neisser, A., Kaufmann, C.A., Sadewasser, S., Lux-Steiner, M.C., Appl. Phys. Lett. 88, 143510 (2006).Google Scholar
91.Glatzel, T., Rusu, M., Sadewasser, S., Lux-Steiner, M.C., Nanotechnology 19, 145705 (2008).Google Scholar
92.Fuertes Marrón, D., Glatzel, T., Meeder, A., Schedel-Niedrig, T., Sadewasser, S., Lux-Steiner, M.C., Appl. Phys. Lett. 85, 3755 (2004).Google Scholar
93.Visoly-Fisher, I., Cohen, S., Gartsman, K., Ruzin, A., Cahen, D., Adv. Funct. Mater. 16, 649 (2006).Google Scholar
94.Rusu, M., Bär, M., Lehmann, S., Sadewasser, S., Weinhardt, L., Kaufmann, C.A., Strub, E., Röhrich, J., Bohne, W., Lauermann, I., Jung, C., Heske, C., Lux-Steiner, M.C., Appl. Phys. Lett. 95, 173502 (2009).Google Scholar