Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T17:46:28.208Z Has data issue: false hasContentIssue false

Regenerative engineering and advanced materials science

Published online by Cambridge University Press:  10 August 2017

Roshan James
Affiliation:
University of Connecticut, USA; [email protected]
Cato T. Laurencin
Affiliation:
University of Connecticut, USA; [email protected]
Get access

Abstract

The holy grail of regenerative technologies is to regrow a limb. This grand challenge requires us to develop truly innovative strategies and toolboxes across advanced materials science, stem cell science, physics, and developmental biology, and converge these advancements to address the limitations of wound healing and harness the regenerative capacity in humans. We discuss the convergence approach put forward by the field of regenerative engineering to develop translational strategies involving electrically conductive and novel polymers, stem cells, high-throughput technologies, and nanotechnology to regenerate the limb.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pidcoke, H.F., Aden, J.K., Mora, A.G., Borgman, M.A., Spinella, P.C., Dubick, M.A., Blackbourne, L.H., Cap, A.P., J. Trauma Acute Care Surg. 73, S445 (2012).CrossRefGoogle Scholar
Paulus, N., Jacobs, M., Greiner, A., Acta Chir. Belg. 112, 251 (2012).Google Scholar
Laurencin, C.T., Khan, Y., Sci. Transl. Med. 4, 160ed9 (2012).Google Scholar
Krueger, C.A., Wenke, J.C., Ficke, J.R., J. Trauma Acute Care Surg. 73, S438 (2012).Google Scholar
Jones, W.S., Patel, M.R., Dai, D., Subherwal, S., Stafford, J., Calhoun, S., Peterson, E.D., J. Am. Coll. Cardiol. 60, 2230 (2012).Google Scholar
Hammarlund, C.S., Carlstrom, M., Melchior, R., Persson, B.M., Prosthet. Orthot. Int. 35, 97 (2011).Google Scholar
Miyajima, S., Shirai, A., Yamamoto, S., Okada, N., Matsushita, T., Diabetes Res. Clin. Pract. 71, 272 (2006).CrossRefGoogle Scholar
Reichert, W., Ratner, B.D., Anderson, J., Coury, A., Hoffman, A.S., Laurencin, C.T., Tirrell, D., J. Biomed. Mater. Res. A 96, 275 (2011).Google Scholar
Langer, R., Vacanti, J.P., Science 260, 920 (1993).CrossRefGoogle Scholar
Taipale, J., Keski-Oja, J., FASEB J. 11, 51 (1997).Google Scholar
Laurencin, C.T., Khan, Y., Regenerative Engineering (CRC Press, Boca Raton, FL, 2013).Google Scholar
Pashuck, E.T., Stevens, M.M., Sci. Transl. Med. 4, 160sr4 (2012).Google Scholar
Deng, M., James, R., Laurencin, C.T., Kumbar, S.G., IEEE Trans. Nanobiosci. 11, 3 (2012).Google Scholar
Zlotolow, D.A., Kozin, S.H., Hand Clin. 28, 587 (2012).CrossRefGoogle Scholar
Yang, W.M.S., Shalumon, K.T., Tang, X., Ramos, D.M., Laurencin, C.T., Kumbar, S.G., “Optimization of Bioactive Polymer-Ceramic Nanocomposite Scaffolds for Bone Regenerative Engineering,” American Association for Dental Research (AADR)/International Association for Dental Research (IADR) Annual Meeting & Exhibition (Charlotte, NC, 2014), p. 593.Google Scholar
Laurencin, C.T., Daley, G.Q., James, R., The Bridge 43 (3), 34 (2013).Google Scholar
Peach, M.S., Roshan, J., Udaya, S.T., Meng, D., Nicole, L.M., Harry, R.A., Cato, T.L., Sangamesh, G.K., Biomed. Mater. 7, 045016 (2012).Google Scholar
Kumbar, S.G., Toti, U.S., Deng, M., James, R., Laurencin, C.T., Aravamudhan, A., Harmon, M., Ramos, D.M., Biomed. Mater. 6, 065005 (2011).Google Scholar
James, R., Toti, U.S., Laurencin, C.T., Kumbar, S.G., Methods Mol. Biol. 726, 243 (2011).Google Scholar
James, R., Kumbar, S.G., Laurencin, C.T., Balian, G., Chhabra, A.B., Biomed. Mater. 6, 025011 (2011).Google Scholar
Jiang, T., Khan, Y., Nair, L.S., Abdel-Fattah, W.I., Laurencin, C.T., J. Biomed. Mater. Res. A 93, 1193 (2010).CrossRefGoogle Scholar
Deng, M., Nair, L.S., Nukavarapu, S.P., Kumbar, S.G., Jiang, T., Weikel, A.L., Krogman, N.R., Allcock, H.R., Laurencin, C.T., Adv. Funct. Mater. 20, 2794 (2010).Google Scholar
Kumbar, S.G., James, R., Nukavarapu, S.P., Laurencin, C.T., Biomed. Mater. 3, 034002 (2008).CrossRefGoogle Scholar
Shayesteh, Y.S., Eslami, B., Dehghan, M.M., Vaziri, H., Alikhassi, M., Mangoli, A., Khojasteh, A., J. Prosthodont. 16, 337 (2007).Google Scholar
Midura, R.J., Ibiwoye, M.O., Powell, K.A., Sakai, Y., Doehring, T., Grabiner, M.D., Patterson, T.E., Zborowski, M., Wolfman, A., J. Orthop. Res. 23, 1035 (2005).Google Scholar
Lee, Y.-H., Rah, J.-H., Park, R.-W., Park, C.-I., Yonsei Med. J. 42, 194 (2001).Google Scholar
Schindler, K., Elger, C.E., Lehnertz, K., Epilepsy Res. 77, 108 (2007).Google Scholar
Connolly, J.F., Hahn, H., Jardon, O., Clin. Orthop. Relat. Res. 124, 97 (1977).Google Scholar
Brighton, C.T., Tadduni, G.T., Goll, S.R., Pollack, S.R., J. Orthop. Res. 6, 676 (1988).Google Scholar
James, R., Laurencin, C.T., Rare Met. 34, 143 (2015).Google Scholar
Hartig, M., Joos, U., Wiesmann, H.-P., Eur. Biophys. J. 29, 499 (2000).Google Scholar
Wiesmann, H.-P., Hartig, M., Stratmann, U., Meyer, U., Joos, U., Biochim. Biophys. Acta Mol. Cell. Res. 1538, 28 (2001).Google Scholar
Bassett, C.A., Crit. Rev. Biomed. Eng. 17, 451 (1989).Google Scholar
Rubin, C.T., Hausman, M.R., Rheum. Dis. Clin. North Am. 14, 503 (1988).Google Scholar
Trock, D.H., Rheum. Dis. Clin. North Am. 26, 51 (2000).Google Scholar
Friedenberg, Z.B., Harlow, M.C., Brighton, C.T., J. Trauma 11, 883 (1971).Google Scholar
Palmoski, M.J., Brandt, K.D., Arthritis Rheum. 27, 675 (1984).CrossRefGoogle Scholar
Otterness, I.G., Eskra, J.D., Bliven, M.L., Shay, A.K., Pelletier, J.P., Milici, A., Arthritis Rheum. 41, 2068 (1998).Google Scholar
Friedenberg, Z., Harlow, M., Brighton, C., J. Trauma Acute Care Surg. 11, 883 (1971).Google Scholar
Scott, G., King, J.B., J. Bone Joint Surg. Am. 76, 820 (1994).Google Scholar
Meng, S., Zhang, Z., Rouabhia, M., J. Bone Miner. Metab. 29, 535 (2011).Google Scholar
Shi, G., Rouabhia, M., Wang, Z., Dao, L.H., Zhang, Z., Biomaterials 25, 2477 (2004).Google Scholar
Hardy, J.G., Lee, J.Y., Schmidt, C.E., Curr. Opin. Biotechnol. 24, 847 (2013).Google Scholar
Longo, U.G., Lamberti, A., Maffulli, N., Denaro, V., Br. Med. Bull. 94, 165 (2010).Google Scholar
Gerber, C., Fuchs, B., Hodler, J., J. Bone Joint Surg. Am. 82, 505 (2000).Google Scholar
Goutallier, D., Postel, J.M., Bernageau, J., Lavau, L., Voisin, M.C., Rev. Rhum. Engl. Ed. 62, 415 (1995).Google Scholar
Kang, J.R., Gupta, R., J. Shoulder Elbow Surg. 21, 175 (2012).Google Scholar
Maffulli, N., Furia, J.P., Rotator Cuff Disorders: Basic Science and Clinical Medicine (JP Medical Ltd, London, UK, 2012).Google Scholar
Nakagaki, K., Ozaki, J., Tomita, Y., Tamai, S., J. Shoulder Elbow Surg. 5, 194 (1996).Google Scholar
Safran, O., Derwin, K.A., Powell, K., Iannotti, J.P., J. Bone Joint Surg. Am. 87, 2662 (2005).Google Scholar
McCullen, S.D., Ramaswamy, S., Clarke, L.I., Gorga, R.E., Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 369 (2009).Google Scholar
Ku, S.H., Lee, S.H., Park, C.B., Biomaterials 33, 6098 (2012).Google Scholar
Tang, X., James, R., Laurencin, C.T., “Engineered Electroactive Scaffolds for Muscle Regeneration,” presented at the Biosensors and Bioelectronics Symposium, Stockholm, Sweden, August 23–25, 2016.Google Scholar
Chin, E.R., Olson, E.N., Richardson, J.A., Yang, Q., Humphries, C., Shelton, J.M., Wu, H., Zhu, W., Bassel-Duby, R., Williams, R.S., Genes Dev. 12, 2499 (1998).Google Scholar
Park, H.S., Gong, M.S., Park, J.H., Moon, S.I., Wall, I.B., Kim, H.W., Lee, J.H., Knowles, J.C., Acta Biomater. 9, 8962 (2013).Google Scholar
Xu, B., Li, Y., Fang, X., Thouas, G.A., Cook, W.D., Newgreen, D.F., Chen, Q., J. Mech. Behav. Biomed. Mater. 28, 354 (2013).Google Scholar
Deng, Z., Guo, Y., Zhao, X., Li, L., Dong, R., Guo, B., Ma, P.X., Acta Biomater. 46, 234 (2016).Google Scholar
Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., Jones, J.M., Science 282, 1145 (1998).Google Scholar
Takahashi, K., Yamanaka, S., Cell 126, 663 (2006).Google Scholar
Fox, I.J., Daley, G.Q., Goldman, S.A., Huard, J., Kamp, T.J., Trucco, M., Science 345, 1247391 (2014).Google Scholar
Zhang, N., Kohn, D.H., Birth Defects Res. C 96, 63 (2012).Google Scholar
Guo, B., Ma, P.X., Sci. China Chem. 57, 490 (2014).Google Scholar
Coyle, R., Jia, J., Mei, Y., Acta Biomater. 34, 60 (2016).Google Scholar
Vunjak-Novakovic, G., Scadden, D.T., Cell Stem Cell 8, 252 (2011).Google Scholar
Khalil, A.S., Xie, A.W., Murphy, W.L., ACS Chem. Biol. 9, 45 (2014).Google Scholar
James, R., Toti, U., Laurencin, C., Kumbar, S., “Electrospun Nanofibrous Scaffolds for Engineering Soft Connective Tissues,” in Biomedical Nanotechnology, Hurst, S.J., Ed. (Humana Press, New York, 2011), p. 243.Google Scholar
Katti, D.S., Robinson, K.W., Ko, F.K., Laurencin, C.T., J. Biomed. Mater. Res. B 70, 286 (2004).Google Scholar
Zhang, S., Nat. Biotechnol. 22, 151 (2004).Google Scholar
Li, W.J., Laurencin, C.T., Caterson, E.J., Tuan, R.S., Ko, F.K., J. Biomed. Mater. Res. 60, 613 (2002).CrossRefGoogle Scholar
Peach, M.S., Kumbar, S.G., James, R., Toti, U.S., Balasubramaniam, D., Deng, M., Ulery, B., Mazzocca, A.D., McCarthy, M.B., Morozowich, N.L., Allcock, H.R., Laurencin, C.T., J. Biomed. Nanotechnol. 8, 107 (2012).Google Scholar
Engler, A.J., Sen, S., Sweeney, H.L., Discher, D.E., Cell 126, 677 (2006).Google Scholar
Lv, H., Li, L., Sun, M., Zhang, Y., Chen, L., Rong, Y., Li, Y.. Stem Cell Res. Ther. 6, 103 (2015).Google Scholar
Seidi, A., Sampathkumar, K., Srivastava, A., Ramakrishna, S., Ramalingam, M., J. Nanosci. Nanotechnol. 13, 4647 (2013).Google Scholar
Zhang, X., Reagan, M.R., Kaplan, D.L., Adv. Drug Deliv. Rev. 61, 988 (2009).Google Scholar
Nelson, C., Khan, Y., Laurencin, C.T., Regener. Biomater. 1, 3 (2014).Google Scholar
Wang, J., Valmikinathan, C.M., Liu, W., Laurencin, C.T., Yu, X., J. Biomed. Mater. Res. A 93, 753 (2010).Google Scholar
Pham, C., Greenwood, J., Cleland, H., Woodruff, P., Maddern, G., Burns 33, 946 (2007).Google Scholar
Tutak, W., Jyotsnendu, G., Bajcsy, P., Simon, C.G., J. Biomed. Mater. Res. B, February 17, 2016 [Epub], doi:10.1002/jbm.b.33624.Google Scholar
Oliveira, M.B., Mano, J.F., Trends Biotechnol. 32, 627 (2014).CrossRefGoogle Scholar
Mei, Y., Saha, K., Bogatyrev, S.R., Yang, J., Hook, A.L., Kalcioglu, Z.I., Cho, S.-W., Mitalipova, M., Pyzocha, N., Rojas, F., Van Vliet, K.J., Davies, M.C., Alexander, M.R., Langer, R., Jaenisch, R., Anderson, D.G., Nat. Mater. 9, 768 (2010).Google Scholar
Anderson, D.G., Putnam, D., Lavik, E.B., Mahmood, T.A., Langer, R., Biomaterials 26, 4892 (2005).Google Scholar
Chen, W., Villa-Diaz, L.G., Sun, Y., Weng, S., Kim, J.K., Lam, R.H.W., Han, L., Fan, R., Krebsbach, P.H., Fu, J., ACS Nano 6, 4094 (2012).Google Scholar
Tibbitt, M.W., Rodell, C.B., Burdick, J.A., Anseth, K.S., Proc. Natl. Acad. Sci. U.S.A. 112, 14444 (2015).Google Scholar
Dvir, T., Timko, B.P., Kohane, D.S., Langer, R., Nat. Nanotechnol. 6, 13 (2011).Google Scholar
Kelleher, C.M., Vacanti, J.P., J. R. Soc. Interface 7 (Suppl. 6), S717 (2010).Google Scholar
Celiz, A.D., Smith, J.G., Patel, A.K., Hook, A.L., Rajamohan, D., George, V.T., Flatt, L., Patel, M.J., Epa, V.C., Singh, T., Langer, R., Anderson, D.G., Allen, N.D., Hay, D.C., Winkler, D.A., Barrett, D.A., Davies, M.C., Young, L.E., Denning, C., Alexander, M.R., Adv. Mater. Weinheim 27, 4006 (2015).CrossRefGoogle Scholar
Metavarayuth, K., Sitasuwan, P., Zhao, X., Lin, Y., Wang, Q., ACS Biomater. Sci. Eng. 2, 142 (2016).Google Scholar
Derby, B., Science 338, 921 (2012).Google Scholar
Park, D., Lim, J., Park, J.Y., Lee, S.H., Stem Cells Transl. Med. 4, 1352 (2015).Google Scholar