Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-02T23:54:47.208Z Has data issue: false hasContentIssue false

Reflecting upon the losses in plasmonics and metamaterials

Published online by Cambridge University Press:  15 August 2012

Jacob B. Khurgin
Affiliation:
Department of Electrical and Computer Engineering, Johns Hopkins University; [email protected]
Alexandra Boltasseva
Affiliation:
School of Electrical and Computer Engineering at Purdue University, Birck Nanotechnology Center; [email protected]
Get access

Abstract

Plasmonics aims at combining features of photonics and electronics by coupling photons with a free-electron gas, whose subwavelength oscillations (surface plasmons) enable manipulation of light at the nanoscale and engender the exciting properties of optical metamaterials. Plasmonics is facing a grand challenge of overcoming metal losses impeding its progress. We reflect on the reasons why subwavelength confinement and loss are intimately intertwined and investigate the physics of loss in conductors beyond the conventional Drude model. We suggest that commonly used noble metals may not be the best materials for plasmonics and describe alternate materials such as transparent conducting oxides and transition metal nitrides. We consider the prospects of compensating the loss with gain materials and conclude that the so-far elusive solution to the loss obstacle lies in finding better materials with lower losses.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ritchie, R.H., Phys. Rev. 106, 874 (1957).CrossRefGoogle Scholar
2.Barnes, W.L., Dereux, A., Ebbesen, T.W., Nature 424, 824 (2003).CrossRefGoogle Scholar
3.Maier, S.A., Atwater, H.A., J. Appl. Phys. 98, 1 (2005).CrossRefGoogle Scholar
4.Maier, S.A., Plasmonics: Fundamentals and Applications (Springer, NY, 2007).CrossRefGoogle Scholar
5.Lal, S., Link, S., Halas, N.J., Nat. Photonics 1, 641 (2008).CrossRefGoogle Scholar
6.Gramotnev, D.K., Bozhevolnyi, S.I., Nat. Photonics 4, 83 (2010).CrossRefGoogle Scholar
7.Veselago, V.G., Sov. Phys. Usp. 10, 509 (1968).CrossRefGoogle Scholar
8.Pendry, J.B., Phys. Rev. Lett. 85, 3966 (2000).CrossRefGoogle Scholar
9.Cai, W., Shalaev, V.M., Optical Metamaterials: Fundamentals and Applications (Springer, NY, 2009).Google Scholar
10.Pendry, J.B., Schurig, D., Smith, D.R., Science 312, 1780 (2006).CrossRefGoogle Scholar
11.Leonhardt, U., Science 312, 1777 (2006).CrossRefGoogle Scholar
12.Shalaev, V.M., Science 1, 384 (2008).CrossRefGoogle Scholar
13.Kildishev, A.V., Shalaev, V.M., Opt. Lett. 33, 43 (2008).CrossRefGoogle Scholar
14.Johnson, P.B., Christy, R.W., Phys. Rev. B 6, 4370 (1972).CrossRefGoogle Scholar
15.Boltasseva, A., Atwater, H.A., Science 331, 290 (2011).CrossRefGoogle ScholarPubMed
16.West, P.R., Ishii, S., Naik, G.V., Emani, N.K., Shalaev, V.M., Boltasseva, A.., Laser Photonics Rev. 4, 795 (2010).CrossRefGoogle Scholar
17.Feigenbaum, E., Diest, K., Atwater, H.A., Nano Lett. 10, 2111 (2010).CrossRefGoogle Scholar
18.Schuller, J.A., Barnard, E.S., Cai, W., Jun, Y.C., White, J.S., Brongersma, M.L., Nat. Mater. 9, 193 (2010).CrossRefGoogle Scholar
19.Papasimakis, N., Luo, Z., Shen, Z.X., De Angelis, F., Di Fabrizio, E., Nikolaenko, A.E., Zheludev, N.I., Opt. Express 18, 8353 (2010).CrossRefGoogle Scholar
20.Atwater, H.A., Polman, A., Nat. Mater. 9, 205 (2010).CrossRefGoogle Scholar
21.Ashcroft, N.W., Mermin, N.D., Solid State Physics (Cengage Learning, KY, 1976).Google Scholar
22.Born, M., Wolf, E., Principles of Optics (Cambridge University Press, UK, 1997).Google Scholar
23.Khurgin, J.B., Sun, C., Appl. Phys. Lett. 99, 211106 (2011).CrossRefGoogle Scholar
24.Urzhumov, Y.A., Shvets, G., Solid State Communications 146, 208 (2008).CrossRefGoogle Scholar
25.Day, P.K., LeDuc, H.G., Mazin, B.A., Vayonakis, A., Zmuidzinas, J., Nature 425, 817 (2003).CrossRefGoogle Scholar
26.Zhou, J., Koschny, T., Kafesaki, M., Economou, E.N., Pendry, J.B., Soukoulis, C.M., Phys. Rev. Lett. 95, 223902 (2005).CrossRefGoogle Scholar
27.Klein, M.W., Enkrich, C., Wegener, M., Soukoulis, C.M., Linden, S., Opt. Lett. 31, 1259 (2006).CrossRefGoogle Scholar
28.Khurgin, J.B., Sun, G., Optics Express, 20, 1539 (2012).Google Scholar
29.Wang, F., Shen, Y.R., Phys. Rev. Lett. 97, 206806 (2006).CrossRefGoogle Scholar
30.Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S., Phys. Rev. Lett. 84, 4184 (2000).CrossRefGoogle Scholar
31.Shelby, R.A., Smith, D.R., Schultz, S., Science 292, 77 (2001).Google Scholar
32.Padilla, W.J., Taylor, A., Highstrete, C., Lee, M., Averitt, R., Phys. Rev. Lett. 96, 107401 (2006).CrossRefGoogle Scholar
33.Palik, E.D., Handbook of Optical Constants of Solids (Academic Press, New York, 1985).Google Scholar
34.Christensen, H.E., Seraphin, B.O., Phys. Rev. B 4, 3321 (1971).CrossRefGoogle Scholar
35.Liu, M., Pelton, M., Guyot-Sionnest, P., Phys. Rev. B 79, 035418 (2009).CrossRefGoogle Scholar
36.Bouillard, J.-S.G., Dickson, W., O’Connor, D.P., Wurtz, G.A., Zayats, A.V., Nano Lett. 12, 1561 (2012).CrossRefGoogle Scholar
37.Parkins, G.R., Lawrence, W.E., Christy, R.W., Phys. Rev. B 23, 6408 (1981).CrossRefGoogle Scholar
38.Lawrence, W.E., Wilkins, J.W., Phys. Rev. B 7, 2317 (1973).CrossRefGoogle Scholar
39.Gurzhi, R.N., Zh. Eksp. Teor. Fiz. (Sov. Phys. JETP 6, 506, 1958) 35, 965 (1957).Google Scholar
40.Palik, E., Handbook of Optical Constants of Solids (Academic, San Diego, CA, 1985).Google Scholar
41.Blaber, M.G., Arnold, M.D., Harris, N., Ford, M.J., Cortie, M.B., Phys. B 394, 184 (2007).CrossRefGoogle Scholar
42.Chan, G.H., Zhao, J., Hicks, E.M., Schatz, G.C., Van Labeke, D., Nano Lett. 7, 1947 (2007).CrossRefGoogle Scholar
43.Langhammer, C., Schwind, M., Kasemo, B., Zoric, I., Nano Lett. 8, 1461 (2008).CrossRefGoogle Scholar
44.Blaber, M.G., Arnold, M.D., Ford, M.J., J. Phys. Condens. Matter 21, 144211 (2009).CrossRefGoogle Scholar
45.Bobb, D.A., Zhu, G., Mayy, M., Gavrilenko, A.V., Mead, P., Gavrilenko, V.I., Noginov, M.A., Appl. Phys. Lett. 95, 151102 (2009).CrossRefGoogle Scholar
46.Jacob, Z., Alekseyev, L.V., Narimanov, E.E., Opt. Express 14, 8247 (2006).CrossRefGoogle Scholar
47.Engheta, N., Phys. World 23, 31 (2010).CrossRefGoogle Scholar
48.Khurgin, J.B., Sun, G., Appl. Phys. Lett. 96, 181102 (2010).CrossRefGoogle Scholar
49.Rhodes, C., Franzen, S., Maria, J.-P., Losego, M., Leonard, D.N., Laughlin, B., Duscher, G., Weibel, S., J. Appl. Phys. 100, 054905 (2006).CrossRefGoogle Scholar
50.Naik, G.V., Kim, J., Boltasseva, A., Opt. Mater. Express 1, 1099 (2011).CrossRefGoogle Scholar
51.Noginov, M.A., Gu, L., Livenere, J., Zhu, G., Pradhan, A.K., Mundle, R., Bahoura, M., Barnakov, Y.A., Podolskiy, V.A., Appl. Phys. Lett. 99, 021101 (2012).CrossRefGoogle Scholar
52.Naik, G.V., Schroeder, J.L., Ni, X., Kildishev, A.V., Sands, T.D., Boltasseva, A., Opt. Mater. Express 2, 478 (2012).CrossRefGoogle Scholar
53.Wang, L., Clavero, C., Yang, K., Radue, E., Simons, M.T., Novikova, I., Lukaszew, R.A., Opt. Express 20, 8618 (2012).CrossRefGoogle Scholar
54.Minami, T., MRS Bulletin 25, 38 (2000).CrossRefGoogle Scholar
55.Ern, V., Switendick, A.C., Phys. Rev. 137, A1927 (1965).CrossRefGoogle Scholar
56.Jablan, M., Buljan, H., Soljacic, M., Phys. Rev. B 80, 245435 (2009).CrossRefGoogle Scholar
57.Koppens, F.H.L., Chang, D.E., García de Abajo, J., Nano Lett. 11, 3370 (2011).CrossRefGoogle Scholar
58.Geim, A.K., Novoselov, K.S., Nat. Mater. 6, 183 (2007).CrossRefGoogle Scholar
59.Ju, L., Geng, B., Horng, J., Girit, C., Martin, M., Hao, Z., Bechtel, H.A., Liang, X., Zettl, A., Shen, Y.R., Wang, F., Nat. Nanotechnol. 6, 630 (2011).CrossRefGoogle Scholar
60.Naik, G.V., Boltasseva, A., Phys. Status Solidi RRL 4, 295 (2010).CrossRefGoogle Scholar
61.Naik, G.V., Boltasseva, A., Metamaterials 5, 1 (2011).CrossRefGoogle Scholar
62.Guler, U., Naik, G.V., Boltasseva, A., Shalaev, V.M., Kildishev, A.V., Appl. Phys. A 107, 285 (2012).Google Scholar
63.Tassin, P., Koschny, T., Kafesaki, M., Soukoulis, C.M., Nat. Photonics 6, 259 (2012).CrossRefGoogle Scholar
64.Naik, G.V., Liu, J., Kildishev, A.V., Shalaev, V.M., Boltasseva, A., in press (available athttp://arxiv.org/abs/1110.3231).Google Scholar
65.Hoffman, A.J., Alekseyev, L., Howard, S.S., Franz, K.J., Wasserman, D., Podolskiy, V.A., Narimanov, E.E., Sivco, D.L., Gmachl, C., Nat. Mater. 6, 946 (2007).CrossRefGoogle Scholar
66.Rhodes, C., Franzen, S., Maria, J.-P., Losego, M., Leonard, D.N., Laughlin, B., Duscher, G., Weibel, S., J. Appl. Phys. 100, 054905 (2006).CrossRefGoogle Scholar
67.Frölich, A., Wegener, M., Opt. Mater. Express 1, 883 (2011).CrossRefGoogle Scholar
68.Noginov, M.A., Podolskiy, V.A., Zhu, G., Mayy, M., Bahoura, M., Adegoke, J.A., Ritzo, B.A., Reynolds, K., Opt. Express 16, 1385 (2008).CrossRefGoogle Scholar
69.Bergman, D.J., Stockman, M.I., Phys. Rev. Lett. 90, 027402 (2003).CrossRefGoogle Scholar
70.Stockman, M.I., Nat. Photonics 2, 327 (2008).CrossRefGoogle Scholar
71.Stockman, M.I., J. Opt. 12, 024004–1 (2010).CrossRefGoogle Scholar
72.Stockman, M.I., Phys. Rev. Lett. 106, 156802–1 (2011).CrossRefGoogle Scholar
73.Nezhad, M.P., Tetz, K., Fainman, Y., Opt. Express 12, 4072 (2004).CrossRefGoogle Scholar
74.Lu, C.-Y., Chuang, S.L., Opt. Express 19, 13225 (2011).CrossRefGoogle Scholar
75.Noginov, M.A., Zhu, G., Belgrave, A.M., Bakker, R., Shalaev, V.M., Narimanov, E.E., Stout, S., Herz, E., Suteewong, T., Wiesner, U., Nature 460, 1110 (2009).CrossRefGoogle Scholar
76.Oulton, R.F., Sorger, V.J., Zentgraf, T., Ma, R.-M., Gladden, C., Dai, L., Bartal, G., Zhang, X., Nature 461, 629 (2009).CrossRefGoogle Scholar
77.Hill, M.T., Marell, M., Leong, E.S.P., Smalbrugge, B., Zhu, Y., Sun, M., van Veldhoven, P.J., Geluk, E.J., Karouta, F., Oei, Y.-S., Nötzel, R., Ning, C.-Z., Smit, M.K., Opt. Express 17, 11107 (2009).CrossRefGoogle Scholar
78.Ding, K., Liu, Z.C., Yin, L.J., Hill, M.T., Marell, M.J.H., van Veldhoven, P.J., Nöetzel, R., Ning, C.Z., Phys. Rev. B 85, 041301–1 (2012).CrossRefGoogle Scholar
79.Kwon, S.H., Kang, J.-H., Seassal, C., Kim, S.-K., Regreny, P., Lee, Y.-H., Lieber, C.M., Park, H.-G., Nano Lett. 10, 3679 (2010).CrossRefGoogle Scholar
80.Lakhani, A.M., Kim, M.-K., Lau, E.K., Wu, M.C., Opt. Express 19, 18237 (2011).CrossRefGoogle Scholar
81.Lee, J.H., Khajavikhan, M., Simic, A., Gu, Q., Bondarenko, O., Slutsky, B., Nezhad, M.P., Fainman, Y., Opt. Express 19, 21524 (2011).CrossRefGoogle Scholar
82.Nezhad, M.P., Simic, A., Bondarenko, O., Slutsky, B., Mizrahi, A., Feng, L., Lomakin, V., Fainman, Y., Nat. Photonics 4, 395 (2010).CrossRefGoogle Scholar
83.Khajavikhan, M., Simic, A., Katz, M., Lee, J.H., Slutsky, B., Mizrahi, A., Lomakin, V., Fainman, Y., Nature 482, 204 (2012).CrossRefGoogle Scholar
84.Oulton, R.F., Nat. Photonics 6, 219 (2012).CrossRefGoogle Scholar
85.Oulton, R.F., Mater. Today 15, 26 (2012).CrossRefGoogle Scholar
86.Ma, R.-M., Oulton, R.F., Sorger, V.J., Zhang, X., Laser Photonics Rev. (2012), doi:10.1002/lpor.201100040-1.Google Scholar
87.Berini, P., Leon, I.D., Nat. Photonics 6, 16 (2012).CrossRefGoogle Scholar
88.Gather, M.C., Meerholz, K., Danz, N., Leosson, K., Nat. Photonics 4, 457 (2010).CrossRefGoogle Scholar
89.Leon, I.D., Berini, P., Nat. Photonics 4, 382 (2010).CrossRefGoogle Scholar
90.Khurgin, J.B., Sun, C., Appl. Phys. Lett. 100, 011105 (2012).CrossRefGoogle Scholar
91.Purcell, E.M., Phys. Rev. 69, 681 (1946).CrossRefGoogle Scholar
92.Coldren, L.A., Corzine, C.W., Diode Lasers and Photonic Integrated Circuits (Wiley-Interscience, NY, 1995).Google Scholar