Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-27T21:05:57.707Z Has data issue: false hasContentIssue false

Redox-active metal–organic frameworks as electrode materials for batteries

Published online by Cambridge University Press:  07 November 2016

Zhongyue Zhang
Affiliation:
Research Center for Materials Science and Department of Chemistry, Nagoya University, Japan; [email protected]
Kunio Awaga
Affiliation:
Research Center for Materials Science and Department of Chemistry, Nagoya University, Japan; [email protected]
Get access

Abstract

Metal–organic framework (MOF) materials are well known as elegant gaseous energy-storage materials, but their potential for electrical energy storage has only recently been explored. Although numerous studies have focused on MOF-derived porous carbon or nanoscale metal oxide materials, less attention has been paid to the intrinsic properties achievable through the molecular design of MOFs. Indeed, the porous nature of MOF architectures is highly suitable for accommodating electrolyte ions in electrochemical processes, suggesting their potential as high-performance active materials for batteries. In this article, we consider recent examples employing MOF materials as battery electrode materials. Redox-active sites were incorporated on metal junctions, ligands, or both, in the MOF structures. In addition, we introduce novel electrochemical mechanisms observed in the electrochemical process of MOF electrode materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ma, S., Zhou, H.-C., Chem. Commun. 46, 44 (2010).Google Scholar
D’Alessandro, D.M., Kanga, J.R.R., Caddy, J.S., Aust. J. Chem. 64, 718 (2011).Google Scholar
Talin, A.A., Centrone, A., Ford, A.C., Foster, M.E., Stavila, V., Haney, P., Kinney, R.A., Szalai, V., Gabaly, F.E., Yoon, H.P., Léonard, F., Allendorf, M.D., Science 343, 66 (2014).CrossRefGoogle Scholar
Hurd, J.A., Vaidhyanathan, R., Thangadurai, V., Ratcliffe, C.I., Moudrakovski, I.L., Shimizu, G.K.H., Nat. Chem. 1, 705 (2009).CrossRefGoogle Scholar
Wiers, B.M., Foo, M.L., Balsara, N.P., Long, J.R., J. Am. Chem. Soc. 133, 14522 (2011).Google Scholar
Dunn, B., Kamath, H., Tarascon, J.-M., Science 334, 928 (2011).Google Scholar
Larcher, D., Tarascon, J.-M.. Nat. Chem. 7, 19 (2015).CrossRefGoogle Scholar
Li, X.X., Cheng, F.Y., Zhang, S.N., Chen, J., J. Power Sources 160, 542 (2006).Google Scholar
Saravanan, K., Nagarathinam, M., Balaya, P., Vittal, J.J., J. Mater. Chem. 20, 8329 (2010).Google Scholar
Liu, Q., Yu, L., Wang, Y., Ji, Y., Horvat, J., Cheng, M.L., Jia, X., Wang, G., Inorg. Chem. 52, 2817 (2013).Google Scholar
Shi, C., Xia, Q., Xue, X., Liu, Q., Liu, H.-J., RSC Adv. 6, 4442 (2016).CrossRefGoogle Scholar
Gou, L., Hao, L.M., Shi, Y.X., Ma, S.L., Fan, X.Y., Xu, L., Li, D.L., Wang, K., J. Solid State Chem. 210, 121 (2014).CrossRefGoogle Scholar
Maiti, S., Pramanik, A., Manju, U., Mahanty, S., ACS Appl. Mater. Interfaces 7, 16357 (2015).Google Scholar
Maiti, S., Pramanik, A., Manju, U., Mahanty, S., Microporous Mesoporous Mater. 226, 353 (2016).CrossRefGoogle Scholar
Lin, Y.C., Zhang, Q.J., Zhao, C.C., Li, H.L., Kong, C.L., Shen, C., Chen, L., Chem. Commun. 51, 697 (2015).Google Scholar
An, T., Wang, Y., Tang, J., Wang, Y., Zhang, L., Zheng, G., J. Colloid Interface Sci. 445, 320 (2015).Google Scholar
Han, X., Yi, F., Sun, T., Sun, J., Electrochem. Commun. 25, 136 (2012).Google Scholar
Ogihara, N., Yasuda, T., Kishida, Y., Ohsuna, T., Miyamoto, K., Ohba, N., Angew. Chem. Int. Ed. 53, 11467 (2014).Google Scholar
Armand, M., Grugeon, S., Vezin, H., Laruelle, S., Ribière, P., Poizot, P., Tarascon, J.-M., Nat. Mater. 8, 120 (2009).Google Scholar
Nie, P., Shen, L.F., Luo, H.F., Ding, B., Xu, G.Y., Wang, J., Zhang, X.G., J. Mater. Chem. A 2, 5852 (2014).Google Scholar
Tarascon, J.-M., Philos. Trans. R. Soc. Lond. A 368, 3227 (2010).Google Scholar
Kaneko, M., Okada, T., J. Electroanal. Chem. Interfacial Electrochem. 255, 45 (1988).Google Scholar
Imanishi, N., Morikawa, T., Kondo, J., Takeda, Y., Yamamoto, O., Kinugasa, N., Yamagishi, T., J. Power Sources 79, 215 (1999).CrossRefGoogle Scholar
Eftekhari, A., J. Power Sources 126, 221 (2004).Google Scholar
Wessells, C.D., Huggins, R.A., Cui, Y., Nat. Commun. 2, 550 (2011).Google Scholar
Lu, Y., Wang, L., Cheng, J., Goodenough, J.B., Chem. Commun. 48, 6544 (2012).Google Scholar
Wang, L., Lu, Y., Xu, M., Cheng, J., Zhang, D., Goodenough, J.B., Angew. Chem. Int. Ed. 52, 1964 (2013).CrossRefGoogle Scholar
Lee, H.-W., Wang, R.Y., Pasta, M., Lee, S.W., Liu, N., Cui, Y., Nat. Commun. 5, 5280 (2014).Google Scholar
Férey, G., Millange, F., Morcrette, M., Serre, C., Doublet, M.-L., Grenèche, J.-M., Tarascon, J.-M., Angew. Chem. Int. Ed. 46, 3259 (2007).CrossRefGoogle Scholar
Combelles, C., Ben Yahia, M., Pedesseau, L., Doublet, M.-L., J. Phys. Chem. C 114, 9518 (2010).Google Scholar
Shin, J.W., Kim, M., Cirera, J., Chen, S., Halder, G.J., Yersak, T.A., Paesani, F., Cohen, S.M., Meng, Y.S., J. Mater. Chem. A 3, 4738 (2015).Google Scholar
Fateeva, A., Horcajada, P., Devic, T., Serre, C., Marrot, J., Grenèche, J.-M., Morcrette, M., Tarascon, J.-M., Maurin, G., Férey, G., Eur. J. Inorg. Chem. 24, 3789 (2011).Google Scholar
Suga, T., Ohshiro, H., Sugita, S., Oyaizu, K., Nishide, H., Adv. Mater. 21, 1627 (2009).Google Scholar
DeBlase, C.R., Silberstein, K.E., Truong, T.-T., Abruña, H.D., Dichtel, W.R., J. Am. Chem. Soc. 135, 16821 (2013).CrossRefGoogle Scholar
Nguyen, T.L.A., Demir-Cakan, R., Devic, T., Morcrette, M., Ahnfeldt, T., Auban-Senzier, P., Stock, N., Goncalves, A.-M., Filinchuk, Y., Tarascon, J.-M., Férey, G., Inorg. Chem. 49, 7135 (2010).Google Scholar
Nguyen, T.L.A., Devic, T., Mialane, P., Rivière, E., Sonnauer, A., Stock, N., Demir-Cakan, R., Morcrette, M., Livage, C., Marrot, J., Tarascon, J.-M., Férey, G., Inorg. Chem. 49, 10710 (2010).Google Scholar
Zhang, Z., Yoshikawa, H., Awaga, K., J. Am. Chem. Soc. 136, 16112 (2014).Google Scholar
Hibino, M., Harimoto, R., Ogasawara, Y., Kido, R., Sugahara, A., Kudo, T., Tochigi, E., Shibata, N., Ikuhara, Y., Mizuno, N., J. Am. Chem. Soc. 136, 488 (2014).CrossRefGoogle Scholar
Aubrey, M.L., Long, J.R., J. Am. Chem. Soc. 137, 13594 (2015).Google Scholar
Zhang, Z.. Yoshikawa, H., Awaga, K., Chem. Mater. 28, 1298 (2016).Google Scholar
Mizuno, Y., Okubo, M., Hosono, E., Kudo, T., Oh-ishi, K., Okazawa, A., Kojima, N., Kurono, R., Nishimura, S., Yamada, A., J. Mater. Chem. A 1, 13055 (2013).CrossRefGoogle Scholar
Lin, M.-C., Gong, M., Lu, B., Wu, Y., Wang, D.-Y., Guan, M., Angell, M., Chen, C., Yang, J., Hwang, B.-J., Dai, H., Nature 520, 324 (2015).Google Scholar
Armand, M., Tarascon, J.-M., Nature 451, 653 (2008).Google Scholar