Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T13:23:31.909Z Has data issue: false hasContentIssue false

Recent Developments in Light-Emitting Polymers

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Conjugated light-emitting polymers (LEPs) have real potential to serve as the active layer in a new generation of emissive displays. Emerging as lead candidates for first-generation displays are poly(1,4-phenylene vinylene)s (PPVs) and poly(9,9-dialkylfluorene)s, as well as other polyaromatic materials. The poly(fluorene)s are at present the most commercially developed of these LEP materials for red–green–blue (RGB) applications. The low power consumption of LEP devices in general makes them particularly suited to mobile applications. Combining solution-processable emissive polymers with direct-patterning methods such as ink-jet printing will lead to the possibility of low-cost, high-resolution displays. The synthesis and properties of PPVs and poly(9,9-dialkylfluorene)s are briefly reviewed in this article, with a major focus on recent developments.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kraft, A., Grimsdale, A.C., and Holmes, A.B., Angew. Chem., Int. Ed. Engl. 37 (1998) p. 402.3.0.CO;2-9>CrossRefGoogle Scholar
2.Cacialli, F., Curr. Opin. Colloid Interface Sci. 4 (1999) p. 159.CrossRefGoogle Scholar
3.Friend, R.H., Gymer, R.W., Holmes, A.B., Burroughes, J.H., Marks, R.N., Taliani, C., Bradley, D.D.C., dos Santos, D.A., Brédas, J.L., Lögdlund, M., and Salaneck, W.R., Nature 397 (1999) p. 121.CrossRefGoogle Scholar
4.Segura, J.L., Acta Polym. 49 (1998) p. 319.3.0.CO;2-Q>CrossRefGoogle Scholar
5.Bernius, M.T., Inbasekaran, M., O'Brian, J., and Wu, W., Adv. Mater. 12 (2000) p. 1737.3.0.CO;2-N>CrossRefGoogle Scholar
6.Leclerc, M., J. Polym. Sci. Part A: Polym. Chem. 39 (2001) p. 2867.CrossRefGoogle Scholar
7.Kim, D.Y., Cho, H.N., and Kim, C.Y., Prog. Polym. Sci. 25 (2000) p. 1089.CrossRefGoogle Scholar
8.Hay, M. and Klavetter, F.L., J. Am. Chem. Soc. 117 (1995) p. 7112.CrossRefGoogle Scholar
9.Frederiksen, P., Bjornholm, T., Madsen, H.G., and Bechgaard, K., J. Mater. Chem. 4 (1994) p. 675.CrossRefGoogle Scholar
10.Burn, P.L., Kraft, A., Baigent, D.R., Bradley, D.D.C., Brown, A.R., Friend, R.H., Gymer, R.W., Holmes, A.B., and Jackson, R.W., J. Am. Chem. Soc. 115 (1993) p. 10117.CrossRefGoogle Scholar
11.Burn, P.L., Holmes, A.B., Kraft, A., Bradley, D.D.C., Brown, A.R., Friend, R.H., and Gymer, R.W., Nature 356 (1992) p. 47.CrossRefGoogle Scholar
12.Kido, J., Kimura, M., and Nagai, K., Science 267 (1995) p. 1332.CrossRefGoogle Scholar
13.Nakamura, N., Wakabayashi, S., Miyairi, K., and Fujii, T., Chem. Lett. (1994) p. 1741.CrossRefGoogle Scholar
14.Ohmori, Y., Fujii, A., Uchida, M., Morishima, C., and Yoshino, K., Appl. Phys. Lett. 62 (1993) p. 3250.CrossRefGoogle Scholar
15.Adachi, C., Tsutsui, T., and Saito, S., Appl. Phys. Lett. 55 (1989) p. 1489.CrossRefGoogle Scholar
16.Burroughes, J.H., Bradley, D.D.C., Brown, A.R., Marks, R.N., MacKay, K., Friend, R.H., Burn, P.L., and Holmes, A.B., Nature 347 (1990) p. 539.CrossRefGoogle Scholar
17.Asraki, S.H., Rughooputh, S.D., and Wudl, F., Synth. Met. 29 (1989) p. E129.Google Scholar
18.Hoger, S.H., McNamara, J.I., Schricker, S., and Wudl, F., Chem. Mater. 6 (1994) p. 171.CrossRefGoogle Scholar
19.Sarnecki, G.J., Burn, P.L., Kraft, A., Friend, R.H., and Holmes, A.B., Synth. Met. 55 (1993) p. 914.CrossRefGoogle Scholar
20.Braun, D. and Heeger, A., Appl. Phys. Lett. 58 (1991) p. 1982.CrossRefGoogle Scholar
21.Moratti, S.C., Cervini, R., Holmes, A.B., Baigent, D.R., Friend, R.H., Greenham, N.C., Grüner, J., and Hamer, P.J., Synth. Met. 71 (1995) p. 2117.CrossRefGoogle Scholar
22.Greenham, N.C., Moratti, S.C., Bradley, D.D.C., Friend, R.H., and Holmes, A.B., Nature 365 (1993) p. 628.CrossRefGoogle Scholar
23.Hwang, D.H., Kim, S.T., Shim, H.K., Holmes, A.B., Moratti, S.C., and Friend, R.H., J. Chem. Soc., Chem. Commun. (1996) p. 2241.CrossRefGoogle Scholar
24.Zhang, C., Hoger, S., Pakbaz, K., Wudl, F., and Heeger, A.J., J. Electron. Mater. 23 (1994) p. 453.CrossRefGoogle Scholar
25.Johansson, D.M., Srdanov, G., Theander, M., Yu, G., Inganäs, O., and Andersson, M.R., Synth. Met. 101 (1999) p. 56.CrossRefGoogle Scholar
26.Zarras, P., Stenger-Smith, J.D., Lindsay, G.A., Chafin, A.P., Hollins, R.A., Merwin, L.H., Ostrom, G.S., and Norris, W.P., Abstr. Pap. Am. Chem. Soc. 212, Polym. Mater. Sci. Eng. (1996) p. 261.Google Scholar
27.Hsieh, B.R., Yu, Y., Forsythe, E.W., Schaaf, G.M., and Feld, W.A., J. Am. Chem. Soc. 120 (1998) p. 231.CrossRefGoogle Scholar
28.Gilch, H.G. and Wheelwright, W.L., J. Polym. Sci. A1 4 (1966) p. 1337.CrossRefGoogle Scholar
29.Berntsen, A., Croonen, Y., Liedenbaum, C., Schoo, H., Visser, R.J., Vleggaar, J., and van de Weijer, P., Opt. Mater. 9 (1998) p. 125.CrossRefGoogle Scholar
30.Scott, J.C., Kaufman, J., Brock, P., DiPietro, R., Salem, J., and Goitia, J., J. Appl. Phys. 79 (1996) p. 2745.CrossRefGoogle Scholar
31.Spreitzer, H., Becker, H., Kluge, E., Kreuder, W., Demandt, R., and Schoo, H.G., Adv. Mater. 10 (1998) p. 1340.3.0.CO;2-G>CrossRefGoogle Scholar
32.Becker, H., Spreitzer, H., Ibrom, K., and Kreuder, W., Macromolecules 32 (1999) p. 4925.CrossRefGoogle Scholar
33.Bernius, M.T., Inbasekaran, M., Woo, E.P., Wu, W., and Wujkowski, L., J. Mater. Sci.: Mater. Electron. 11 (2000) p. 111.Google Scholar
34.Rehahn, M., Schluter, A.D., Wegner, G., and Feast, W.J., Polymer 30 (1989) p. 1054.CrossRefGoogle Scholar
35.Scherf, U. and Müllen, K., Makromol. Chem., Rapid Commun. 12 (1991) p. 489.CrossRefGoogle Scholar
36.Kreyenschmidt, M., Uckert, F., and Müllen, K., Macromolecules 28 (1995) p. 4577.CrossRefGoogle Scholar
37.Grell, M., Bradley, D.D.C., Inbasekaran, M., and Woo, E.P., Adv. Mater. 9 (1997) p. 798.CrossRefGoogle Scholar
38.Fukuda, M., Sawada, K., and Yoshino, K., J. Polym. Sci., Part A: Polym. Chem. 31 (1993) p. 2465.CrossRefGoogle Scholar
39.Setayesh, S., Marsitzky, D., and Müllen, K., Macromolecules 33 (2000) p. 2016.CrossRefGoogle Scholar
40.Setayesh, S., Grimsdale, A.C., Weil, T., Enkelmann, V., Müllen, K., Meghdadi, F., List, E.J.W., and Leising, G., J. Am. Chem. Soc. 123 (2001) p. 946.CrossRefGoogle Scholar
41.Cho, N., Hwang, D.H., Lee, J.L., Jung, B.J., and Shim, H.K., Macromolecules 35 (4) (2002) p. 1224.CrossRefGoogle Scholar
42.He, Y., Gong, S., Hattori, R., and Kanicki, J., Appl. Phys. Lett. 74 (1999) p. 2265.CrossRefGoogle Scholar
43.Miteva, T., Meisel, A., Knoll, W., Nothofer, H.G., Scherf, U., Muller, D.C., Meerholz, K., Yasuda, A., and Neher, D., Adv. Mater. 13 (2001) p. 565.3.0.CO;2-W>CrossRefGoogle Scholar
44.Weinfurtner, K.-H., Fujikawa, H., Tokito, S., and Taga, Y., Appl. Phys. Lett. 76 (2000) p. 2502.CrossRefGoogle Scholar
45.Fukuda, M., Sawada, K., Morita, S., and Yoshino, K., Synth. Met. 41 (1991) p. 855.CrossRefGoogle Scholar
46.Yamamoto, T., Hayashi, Y., and Yamamoto, A., Bull. Chem. Soc. Jpn. 51 (1978) p. 2091.CrossRefGoogle Scholar
47.Pei, Q. and Yang, Y., J. Am. Chem. Soc. 118 (1996) p. 7416.CrossRefGoogle Scholar
48.Klarner, G., Miller, R.D., and Hawker, C.J., Polym. Prepr. 39 (1998) p. 1006.Google Scholar
49.Klarner, G., Lee, J.I., Lee, V.Y., Chan, E., Chen, J.P., Nelson, A., Markiewicz, D., Siemens, R., Scott, J.C., and Miller, R.D., Chem. Mater. 11 (1999) p. 1800.CrossRefGoogle Scholar
50.Klarner, G., Davey, M., Chen, W., Scott, J., and Miller, R., Adv. Mater. 10 (1998) p. 993.3.0.CO;2-2>CrossRefGoogle Scholar
51.Tang, H.Z., Fujiki, M., Zhang, Z.B., Torimitsu, K., and Motonaga, M., Chem. Commun. (2001) p. 2426.CrossRefGoogle Scholar
52.Inbasekaran, M., Woo, E., Wu, W.S., Bernius, M., and Wujkowski, L., Synth. Met. 111 (2000) p. 397.CrossRefGoogle Scholar
53.Redecker, M., Bradley, D.D.C., Inbasekaran, M., Wu, W.W., and Woo, E.P., Adv. Mater. 11 (1999) p. 241.3.0.CO;2-J>CrossRefGoogle Scholar
54.Bender, T.P., Graham, J.F., and Duff, J.M., Chem. Mater. 13 (2001) p. 4105.CrossRefGoogle Scholar
55.Grice, A.W., Bradley, D.D.C., Bernius, M.T., Inbasekaran, M., Wu, W.W., and Woo, E.P., Appl. Phys. Lett. 73 (1998) p. 629.CrossRefGoogle Scholar
56.Millard, I.S., Synth. Met. 111 (2000) p. 119.CrossRefGoogle Scholar
57.Rehahn, M., Schluter, A.D., Wegner, G., and Feast, W.J., Polymer 30 (1989) p. 1060.CrossRefGoogle Scholar
58.Miyaura, N. and Suzuki, A., Chem. Rev. 95 (1995) p. 2457.CrossRefGoogle Scholar
59.Bedford, R.B. and Cazin, C.S.J., Chem. Commun. (2001) p. 1540.CrossRefGoogle Scholar
60.Wolfe, J.P., Singer, R.A., Yang, B.H., and Buchwald, S.L., J. Am. Chem. Soc. 121 (1999) p. 9550.CrossRefGoogle Scholar
61.Littke, A.N.F. and Fu, G.C., Angew. Chem., Int. Ed. 110 (1998) p. 3586.3.0.CO;2-7>CrossRefGoogle Scholar
62.Ranger, M. and Leclerc, M., J. Chem. Soc., Chem. Commun. (1997) p. 1597.CrossRefGoogle Scholar
63.Ranger, M., Rondeau, D., and Leclerc, M., Macromolecules 30 (1997) p. 7686.CrossRefGoogle Scholar
64.Inbasekaran, M., Wu, W., and Woo, E., U.S. Patent No. 5,777,070 (July 7, 1998).Google Scholar
65.Woo, E.P., Shiang, W.R., Inbasekaran, M., and Roof, G.R., U.S. Patent No. 5,962,631 (October 5, 1999).Google Scholar
66.Towns, C.R. and O'Dell, R., PCT No. 00/53656 (September 14, 2000).Google Scholar
67.Milliron, D., Hill, I., Shen, C., Kahn, A., and Schwartz, J.J., Appl. Phys. Lett. 87 (2000) p. 572.Google Scholar
68. Cambridge Display Technology Home Page, www.cdtltd.co.uk.(accessed May 2002).Google Scholar