Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T22:47:50.599Z Has data issue: false hasContentIssue false

Recent Developments in Carbon Nanotube Sorting and Selective Growth

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Due to their high carrier mobilities, electromigration resistance, and tailorable optical properties, carbon nanotubes are promising candidates for high-performance electronic and optoelectronic applications. However, traditional synthetic methods have lacked control over the structure and properties of carbon nanotubes. This polydispersity problem has confounded efforts to take carbon nanotubes from the research laboratory to the marketplace, especially for electronic and optoelectronic applications, where reliable and reproducible performance is paramount. In recent years, the research community has devoted significant effort to this issue, leading to substantial advances in the preparation of monodisperse carbon nanotube materials. This article highlights the most recent and promising developments from two perspectives: post-synthetic sorting and selective growth of carbon nanotubes of predetermined physical and electronic structure. These complementary approaches have yielded improved uniformity in carbon nanotube materials, resulting in impressive advances in carbon nanotube electronic and optoelectronic technology.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Tans, S.J., Verschueren, A.R.M., Dekker, C., Nature 393, 49 (1998).CrossRefGoogle Scholar
2.Martel, R., Schmidt, T., Shea, H.R., Hertel, T., Avouris, P., Appl. Phys. Lett. 73, 2447 (1998).CrossRefGoogle Scholar
3.Javey, A., Guo, J., Wang, Q., Lundstrom, M., Dai, H.J., Nature 424, 654 (2003).CrossRefGoogle Scholar
4.Bachtold, A., Hadley, P., Nakanishi, T., Dekker, C., Science 294, 1317 (2001).CrossRefGoogle Scholar
5.Derycke, V., Martel, R., Appenzeller, J., Avouris, P., Nano Lett. 1, 453 (2001).CrossRefGoogle Scholar
6.Kaushik, B.K., Goel, S., Rauthan, G., Microelectron. Int. 24, 53 (2007).CrossRefGoogle Scholar
7.Tans, S.J., Devoret, M.H., Dai, H.J., Thess, A., Smalley, R.E., Geerligs, L.J., Dekker, C., Nature 386, 474 (1997).CrossRefGoogle Scholar
8.O'Connell, M.J., Bachilo, S.M., Huffman, C.B., Moore, V.C., Strano, M.S., Haroz, E.H., Rialon, K.L., et al., Science 297, 593 (2002).CrossRefGoogle Scholar
9.Misewich, J.A., Martel, R., Avouris, P., Tsang, J.C., Heinze, S., Tersoff, J., Science 300, 783 (2003).CrossRefGoogle Scholar
10.Haddon, R.C., Sippel, J., Rinzler, A.G., Papadimitrakopoulos, F., MRS Bull. 29, 252 (2004).CrossRefGoogle Scholar
11.Krupke, R., Hennrich, F., Adv. Eng. Mater. 7, 111 (2005).CrossRefGoogle Scholar
12.Banerjee, S., Hemraj-Benny, T., Wong, S.S., J. Nanosci. Nanotechnol. 5, 841 (2005).CrossRefGoogle Scholar
13.Hersam, M.C., Nat. Nanotechnol. 3, 387 (2008).CrossRefGoogle Scholar
14.Hirsch, A., Angew. Chem. Int. Ed. 41, 1853 (2002).3.0.CO;2-N>CrossRefGoogle Scholar
15.Banerjee, S., Hemraj-Benny, T., Wong, S.S., Adv. Mater. 17, 17 (2005).CrossRefGoogle Scholar
16.Tasis, D., Tagmatarchis, N., Bianco, A., Prato, M., Chem. Rev. 106, 1105 (2006).CrossRefGoogle Scholar
17.Izard, N., Kazaoui, S., Hata, K., Okazaki, T., Saito, T., Iijima, S., Minami, N., Appl. Phys. Lett. 92, 243112 (2008).CrossRefGoogle Scholar
18.Chen, F.M., Wang, B., Chen, Y., Li, L.J., Nano Lett. 7, 3013 (2007).CrossRefGoogle Scholar
19.Nish, A., Hwang, J.Y., Doig, J., Nicholas, R.J., Nat. Nanotechnol. 2, 640 (2007).CrossRefGoogle Scholar
20.Hwang, J.Y., Nish, A., Doig, J., Douven, S., Chen, C.W., Chen, L.C., Nicholas, R.J., J. Am. Chem. Soc. 130, 3543 (2008).CrossRefGoogle Scholar
21.Ju, S.Y., Doll, J., Sharma, I., Papadimitrakopoulos, F., Nat. Nanotechnol. 3, 356 (2008).CrossRefGoogle Scholar
22.Marquis, R., Greco, C., Sadokierska, I., Lebedkin, S., Kappes, M.M., Michel, T., Alvarez, L., Sauvajol, J.L., Meunier, S., Mioskowski, C., Nano Lett. 8, 1830 (2008).CrossRefGoogle Scholar
23.Tromp, R.M., Afzali, A., Freitag, M., Mitzi, D.B., Chen, Z., Nano Lett. 8, 469 (2008).CrossRefGoogle Scholar
24.Peng, X., Komatsu, N., Bhattacharya, S., Shimawaki, T., Aonuma, S., Kimura, T., Osuka, A., Nat. Nanotechnol. 2, 361 (2007).CrossRefGoogle Scholar
25.Peng, X., Komatsu, N., Kimura, T., Osuka, A., J. Am. Chem. Soc. 129, 15947 (2007).CrossRefGoogle Scholar
26.Peng, X.B., Komatsu, N., Kimura, T., Osuka, A., ACS Nano 2, 2045 (2008).CrossRefGoogle Scholar
27.Peng, X.B., Wang, F., Kimura, T., Komatsu, N., Osuka, A., J. Phys. Chem. C 113, 9108 (2009).CrossRefGoogle Scholar
28.LeMieux, M.C., Roberts, M., Barman, S., Jin, Y.W., Kim, J.M., Bao, Z.N., Science 321, 101 (2008).CrossRefGoogle Scholar
29.Arnold, M.S., Stupp, S.I., Hersam, M.C., Nano Lett. 5, 713 (2005).CrossRefGoogle Scholar
30.Kim, S.N., Kuang, Z.F., Grote, J.G., Farmer, B.L., Naik, R.R., Nano Lett. 8, 4415 (2008).CrossRefGoogle Scholar
31.Zheng, M., Jagota, A., Semke, E.D., Diner, B.A., Mclean, R.S., Lustig, S.R., Richardson, R.E., Tassi, N.G., Nat. Mater. 2, 338 (2003).CrossRefGoogle Scholar
32.Zheng, M., Jagota, A., Strano, M.S., Santos, A.P., Barone, P., Chou, S.G., Diner, B.A., et al., Science 302, 1545 (2003).CrossRefGoogle Scholar
33.Zheng, M., Semke, E.D., J. Am. Chem. Soc. 129, 6084 (2007).CrossRefGoogle Scholar
34.Tu, X., Zheng, M., Nano Res. 1, 185 (2008).CrossRefGoogle Scholar
35.Hersam, M.C., Nature 460, 186 (2009).CrossRefGoogle Scholar
36.Tu, X.M., Manohar, S., Jagota, A., Zheng, M., Nature 460, 250 (2009).CrossRefGoogle Scholar
37.Arnold, M.S., Green, A.A., Hulvat, J.F., Stupp, S.I., Hersam, M.C., Nat. Nanotechnol. 1, 60 (2006).CrossRefGoogle Scholar
38.Green, A.A., Hersam, M.C., Mater. Today 10, 59 (2007).CrossRefGoogle Scholar
39.Martel, R., ACS Nano 2, 2195 (2008).CrossRefGoogle Scholar
40.Arnold, M.S., Suntivich, J., Stupp, S.I., Hersam, M.C., ACS Nano 2, 2291 (2008).CrossRefGoogle Scholar
41.Green, A.A., Hersam, M.C., Nano Lett. 8, 1417 (2008).CrossRefGoogle Scholar
42.Green, A.A., Duch, M.C., Hersam, M.C., Nano Res. 2, 69 (2009).CrossRefGoogle Scholar
43.Niyogi, S., Densmore, C.G., Doorn, S.K., J. Am. Chem. Soc. 131, 1144 (2009).CrossRefGoogle Scholar
44.Backes, C., Hauke, F., Schmidt, C.D., Hirsch, A., Chem. Commun., 2643 (2009).CrossRefGoogle Scholar
45.Kim, W.J., Nair, N., Lee, C.Y., Strano, M.S., J. Phys. Chem. C 112, 7326 (2008).CrossRefGoogle Scholar
46.Yanagi, K., Iitsuka, T., Fujii, S., Kataura, H., J. Phys. Chem. C 112, 18889 (2008).CrossRefGoogle Scholar
47.Stiirzl, N., Hennrich, F., Lebedkin, S., Kappes, M.M., J. Phys. Chem. C 113, 14628 (2009).CrossRefGoogle Scholar
48.Fagan, J.A., Becker, M.L., Chun, J., Hobbie, E.K., Adv. Mater. 20, 1609 (2008).CrossRefGoogle Scholar
49.Green, A.A., Hersam, M.C., Nat. Nanotechnol. 4, 64 (2009).CrossRefGoogle Scholar
50.Tsyboulski, D.A., Hou, Y., Fakhri, N., Ghosh, S., Zhang, R., Bachilo, S.M., Pasquali, M., Chen, L., Liu, J., Weisman, R.B., Nano Lett. 9, 3282 (2009).CrossRefGoogle Scholar
51.Deng, X.Y., Xiong, D., Wang, H.F., Chen, D.D., Jiao, Z., Zhang, H.J., Wu, M.H., Carbon 47, 1608 (2009).CrossRefGoogle Scholar
52.Sun, X., Zaric, S., Daranciang, D., Welsher, K., Lu, Y., Li, X., Dai, H., J. Am. Chem. Soc. 130, 6551 (2008).CrossRefGoogle Scholar
53.Zhang, M.F., Yamaguchi, T., Iijima, S., Yudasaka, M., J. Phys. Chem. C 113, 11184 (2009).CrossRefGoogle Scholar
54.Sun, X.M., Tabakman, S.M., Seo, W.S., Zhang, L., Zhang, G.Y., Sherlock, S., Bai, L., Dai, H.J., Angew. Chem. Int. Ed. 48, 939 (2009).CrossRefGoogle Scholar
55.Green, A.A., Hersam, M.C., Nano Lett. 9, 4031 (2009).CrossRefGoogle Scholar
56.Miyata, Y., Yanagi, K., Maniwa, Y., Kataura, H., J. Phys. Chem. C 112, 13187 (2008).CrossRefGoogle Scholar
57.Crochet, J., Clemens, M., Hertel, T., J. Am. Chem. Soc. 129, 8058 (2007).CrossRefGoogle Scholar
58.Ma, Y.Z., Graham, M.W., Fleming, G.R., Green, A.A., Hersam, M.C., Phys. Rev. Lett. 101, 217402 (2008).CrossRefGoogle Scholar
59.Zhu, Z.P., Crochet, J., Arnold, M.S., Hersam, M.C., Ulbricht, H., Resasco, D., Hertel, T., J. Phys. Chem. C 111, 3831 (2007).CrossRefGoogle Scholar
60.Kavan, L., Frank, O., Green, A.A., Hersam, M.C., Koltai, J., Zolyomi, V., Kurti, J., Dunsch, L., J. Phys. Chem. C 112, 14179 (2008).CrossRefGoogle Scholar
61.Fleurier, R., Lauret, J.S., Lopez, U., Loiseau, A., Adv. Funct. Mater. 19, 2219 (2009).CrossRefGoogle Scholar
62.Sato, Y., Yanagi, K., Miyata, Y., Suenaga, K., Kataura, H., Iijima, S., Nano Lett. 8, 3151 (2008).CrossRefGoogle Scholar
63.Qian, H.H., Georgi, C., Anderson, N., Green, A.A., Hersam, M.C., Novotny, L., Hartschuh, A., Nano Lett. 8, 1363 (2008).CrossRefGoogle Scholar
64.Qian, H., Araujo, P.T., Georgi, C., Gokus, T., Hartmann, N., Green, A.A., Jorio, A., Hersam, M.C., Novotny, L., Hartschuh, A., Nano Lett. 8, 2706 (2008).CrossRefGoogle Scholar
65.Naumov, A.V., Kuznetsov, O.A., Harutyunyan, A.R., Green, A.A., Hersam, M.C., Resasco, D.E., Nikolaev, P.N., Weisman, R.B., Nano Lett. 9, 3203 (2009).CrossRefGoogle Scholar
66.Yanagi, K., Miyata, Y., Kataura, H., Appl. Phys. Express 1, 034003 (2008).CrossRefGoogle Scholar
67.Yanagi, K., Miyata, Y., Tanaka, T., Fujii, S., Nishide, D., Kataura, H., Diamond Relat. Mater. 18, 935 (2009).CrossRefGoogle Scholar
68.Blackburn, J.L., Barnes, T.M., Beard, M.C., Kim, Y.H., Tenent, R.C., McDonald, T.J., To, B., Coutts, T.J., Heben, M.J., ACS Nano 2, 1266 (2008).CrossRefGoogle Scholar
69.Barnes, T.M., Blackburn, J.L., van de Lagemaat, J., Coutts, T.J., Heben, M.J., ACS Nano 2, 1968 (2008).CrossRefGoogle Scholar
70.Engel, M., Small, J.P., Steiner, M., Freitag, M., Green, A.A., Hersam, M.C., Avouris, P., ACS Nano 2, 2445 (2008).CrossRefGoogle Scholar
71.Nougaret, L., Happy, H., Dambrine, G., Derycke, V., Bourgoin, J.P., Green, A.A., Hersam, M.C., Appl. Phys. Lett. 94, 243505 (2009).CrossRefGoogle Scholar
72.Tanaka, T., Jin, H.H., Miyata, Y., Kataura, H., Appl. Phys. Express 1, 114001 (2008).CrossRefGoogle Scholar
73.Moshammer, K., Hennrich, F., Kappes, M.M., Nano Res. 2, 599 (2009).CrossRefGoogle Scholar
74.Tanaka, T., Jin, H., Miyata, Y., Fujii, S., Suga, H., Naitoh, Y., Minari, T., Miyadera, T., Tsukagoshi, K., Kataura, H., Nano Lett. 9, 1497 (2009).CrossRefGoogle Scholar
75.Fujii, S., Tanaka, T., Miyata, Y., Suga, H., Naitoh, Y., Minari, T., Miyadera, T., Tsukagoshi, K., Kataura, H., Appl. Phys. Express 2, 071601 (2009).CrossRefGoogle Scholar
76.Li, Y.M., Mann, D., Rolandi, M., Kim, W., Ural, A., Hung, S., Javey, A., Nano Lett. 4, 317 (2004).CrossRefGoogle Scholar
77.Wang, B., Poa, C.H.P., Wei, L., Li, L.J., Yang, Y.H., Chen, Y., J. Am. Chem. Soc. 129, 9014 (2007).CrossRefGoogle Scholar
78.Ciuparu, D., Chen, Y., Lim, S., Haller, G.L., Pfefferle, L., J. Phys. Chem. B 108, 503 (2004).CrossRefGoogle Scholar
79.Chen, Y., Ciuparu, D., Lim, S.Y., Yang, Y.H., Haller, G.L., Pfefferle, L., J. Catal. 225, 453 (2004).CrossRefGoogle Scholar
80.Chen, Y., Ciuparu, D., Lim, S., Yang, Y.H., Haller, G.L., Pfefferle, L., J. Catal. 226, 351 (2004).CrossRefGoogle Scholar
81.Miyauchi, Y.H., Chiashi, S.H., Murakami, Y., Hayashida, Y., Maruyama, S., Chem. Phys. Lett. 387, 198 (2004).CrossRefGoogle Scholar
82.Li, X.L., Tu, X.M., Zaric, S., Welsher, K., Seo, W.S., Zhao, W., Dai, H.J., J. Am. Chem. Soc. 129, 15770 (2007).CrossRefGoogle Scholar
83.Bachilo, S.M., Balzano, L., Herrera, J.E., Pompeo, F., Resasco, D.E., Weisman, R.B., J. Am. Chem. Soc. 125, 11186 (2003).CrossRefGoogle Scholar
84.Ding, L., Tselev, A., Wang, J.Y., Yuan, D.N., Chu, H.B., McNicholas, T.P., Li, Y., Liu, J., Nano Lett. 9, 800 (2009).CrossRefGoogle Scholar
85.Nikolaev, P., Bronikowski, M.J., Bradley, R.K., Rohmund, F., Colbert, D.T., Smith, K.A., Smalley, R.E., Chem. Phys. Lett. 313, 91 (1999).CrossRefGoogle Scholar
86.Thess, A., Lee, R., Nikolaev, P., Dai, H.J., Petit, P., Robert, J., Xu, C.H., Science 273, 483 (1996).CrossRefGoogle Scholar
87.Wang, Y., Liu, Y.Q., Li, X.L., Cao, L.C., Wei, D.C., Zhang, H.L., Shi, D.C., Yu, G., Kajiura, H., Li, Y.M., Small 3, 1486 (2007).CrossRefGoogle Scholar
88.Dai, L., Carbon Nanotechnology: Recent Developments in Chemistry, Physics, Materials Science and Applications (Elsevier, Oxford, 2006).Google Scholar
89.Li, W.Z., Xie, S.S., Qian, L.X., Chang, B.H., Zou, B.S., Zhou, W.Y., Zhao, R.A., Wang, G., Science 274, 1701 (1996).CrossRefGoogle Scholar
90.Ren, Z.F., Huang, Z.P., Xu, J.W., Wang, J.H., Bush, P., Siegal, M.P., Provencio, P.N., Science 282, 1105 (1998).CrossRefGoogle Scholar
91.Fan, S.S., Chapline, M.G., Franklin, N.R., Tombler, T.W., Cassell, A.M., Dai, H.J., Science 283, 512 (1999).CrossRefGoogle Scholar
92.Hata, K., Futaba, D.N., Mizuno, K., Namai, T., Yumura, M., Iijima, S., Science 306, 1362 (2004).CrossRefGoogle Scholar
93.Eres, G., Kinkhabwala, A.A., Cui, H.T., Geohegan, D.B., Puretzky, A.A., Lowndes, D.H., J. Phys. Chem. B 109, 16684 (2005).CrossRefGoogle Scholar
94.Zhang, G.Y., Mann, D., Zhang, L., Javey, A., Li, Y.M., Yenilmez, E., Wang, Q., Proc. Nat. Acad. Sci. U.S.A. 102, 16141 (2005).CrossRefGoogle Scholar
95.Xu, Y.Q., Flor, E., Kim, M.J., Hamadani, B., Schmidt, H., Smalley, R.E., Hauge, R.H., J. Am. Chem. Soc. 128, 6560 (2006).CrossRefGoogle Scholar
96.Qu, L., Dai, L., Adv. Mater. 19, 3844 (2007).CrossRefGoogle Scholar
97.Qu, L.T., Du, F., Dai, L.M., Nano Lett. 8, 2682 (2008).CrossRefGoogle Scholar
98.Joselevich, E., Lieber, C.M., Nano Lett. 2, 1137 (2002).CrossRefGoogle Scholar
99.Ural, A., Li, Y.M., Dai, H.J., Appl. Phys. Lett. 81, 3464 (2002).CrossRefGoogle Scholar
100.Huang, S.M., Maynor, B., Cai, X.Y., Liu, J., Adv. Mater. 15, 1651 (2003).CrossRefGoogle Scholar
101.Huang, S.M., Cai, X.Y., Liu, J., J. Am. Chem. Soc. 125, 5636 (2003).CrossRefGoogle Scholar
102.Huang, L.M., Cui, X.D., White, B., O'Brien, S.P., J. Phys. Chem. B 108, 16451 (2004).CrossRefGoogle Scholar
103.Ismach, A., Segev, L., Wachtel, E., Joselevich, E., Angew. Chem. Int. Ed. 43, 6140 (2004).CrossRefGoogle Scholar
104.Han, S., Liu, X.L., Zhou, C.W., J. Am. Chem. Soc. 127, 5294 (2005).CrossRefGoogle Scholar
105.Kocabas, C., Shim, M., Rogers, J.A., J. Am. Chem. Soc. 128, 4540 (2006).CrossRefGoogle Scholar
106.Kocabas, C., Hur, S.H., Gaur, A., Meitl, M.A., Shim, M., Rogers, J.A., Small 1, 1110 (2005).CrossRefGoogle Scholar
107.Yuan, D.N., Ding, L., Chu, H.B., Feng, Y.Y., McNicholas, T.P., Liu, J., Nano Lett. 8, 2576 (2008).CrossRefGoogle Scholar
108.Ding, L., Yuan, D.N., Liu, J., J. Am. Chem. Soc. 130, 5428 (2008).CrossRefGoogle Scholar
109.Kamaras, K., Itkis, M.E., Hu, H., Zhao, B., Haddon, R.C., Science 301, 1501 (2003).CrossRefGoogle Scholar
110.An, L., Fu, Q.A., Lu, C.G., Liu, J., J. Am. Chem. Soc. 126, 10520 (2004).CrossRefGoogle Scholar
111.Balasubramanian, K., Sordan, R., Burghard, M., Kern, K., Nano Lett. 4, 827 (2004).CrossRefGoogle Scholar
112.Seidel, R., Graham, A.P., Unger, E., Duesberg, G.S., Liebau, M., Steinhoegl, W., Kreupl, F., Hoenlein, W., Nano Lett. 4, 831 (2004).CrossRefGoogle Scholar
113.Zhang, G.Y., Qi, P.F., Wang, X.R., Lu, Y.R., Li, X.L., Tu, R., Bangsaruntip, S., Mann, D., Zhang, L., Dai, H.J., Science 314, 974 (2006).CrossRefGoogle Scholar
114.Kanungo, M., Lu, H., Malliaras, G.G., Blanchet, G.B., Science 323, 234 (2009).CrossRefGoogle Scholar
115.Strano, M.S., Dyke, C.A., Usrey, M.L., Barone, P.W., Allen, M.J., Shan, H.W., Kittrell, C., Hauge, R.H., Tour, J.M., Smalley, R.E., Science 301, 1519 (2003).CrossRefGoogle Scholar
116.Collins, P.C., Arnold, M.S., Avouris, P., Science 292, 706 (2001).CrossRefGoogle Scholar
117.Collins, P.G., Hersam, M., Arnold, M., Martel, R., Avouris, P., Phys. Rev. Lett. 86, 3128 (2001).CrossRefGoogle Scholar
118.Bahr, J.L., Yang, J.P., Kosynkin, D.V., Bronikowski, M.J., Smalley, R.E., Tour, J.M., J. Am. Chem. Soc. 123, 6536 (2001).CrossRefGoogle Scholar
119.Wang, Y.H., Kim, M.J., Shan, H.W., Kittrell, C., Fan, H., Ericson, L.M., Hwang, W.F., Arepalli, S., Hauge, R.H., Smalley, R.E., Nano Lett. 5, 997 (2005)CrossRefGoogle Scholar