Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-02T19:26:09.271Z Has data issue: false hasContentIssue false

Recent Developments in Artificial Molecular-Machine–Based Active Nanomaterials and Nanosystems

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Artificial molecular machines capable of converting chemical, electrochemical, and photochemical energy into mechanical motion represent a high-impact, fast-growing field of interdisciplinary research. These molecular-scale systems utilize a “bottom-up” technology centered upon the design and manipulation of molecular assemblies and are potentially capable of delivering efficient actuation at length scales dramatically smaller than traditional microscale actuators. As actuation materials, molecular machines have many advantages, such as high strain (40%–60%), high force and energy densities, and the capability to maintain their actuation properties from the level of a single molecule to the macroscale. These advantages have inspired researchers to develop molecular-machine–based active nanomaterials and nanosystems, including electroactive and photoactive polymers. This article will discuss the structures and properties of artificial molecular machines, as well as review recent progress on efforts to move molecular machines from solution to surfaces to devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Balzani, V., Gomez-Lopez, M., Stoddart, J.F., Acc. Chem. Res. 31, 405 (1998).CrossRefGoogle Scholar
2.Kelly, T.R., Silva, D.D., Silva, R.A., Nature 401, 150 (1999).CrossRefGoogle Scholar
3.Balzani, V., Credi, A., Raymo, F.M., Stoddart, J.F., Angew. Chem. Int. Ed. 39, 3348 (2000).3.0.CO;2-X>CrossRefGoogle Scholar
4.Balzani, V., Credi, A., Venturi, M., Molecular Devices and Machines: A Journey into the Nano World (Wiley-VCH, Weinheim, 2003).CrossRefGoogle Scholar
5.Kinbara, K., Aida, T., Chem. Rev. 105, 1377 (2005).CrossRefGoogle Scholar
6.Feynman, R.P., Eng. Sci. 23, 22 (1960).Google Scholar
7.Shinkai, S., Manabe, O., Top. Curr. Chem. 121, 67 (1984).CrossRefGoogle Scholar
8.Bissell, R.A., Córdova, E., Kaifer, A.E., Stoddart, J.F., Nature 369, 133 (1994).CrossRefGoogle Scholar
9.Raehm, L., Kern, J.M., Sauvage, J.P., Chem. Eur. J. 5, 3310 (1999).3.0.CO;2-R>CrossRefGoogle Scholar
10.Brouwer, A.M., Frochot, C., Gatti, F.G., Leigh, D.A., Mottier, L., Paolucci, F., Roffia, S., Wurpel, G.W.H., Science 291, 2124 (2001).CrossRefGoogle Scholar
11.Elizarov, A.M., Chiu, S.H., Stoddart, J.F., J. Org. Chem. 67, 9175 (2002).CrossRefGoogle Scholar
12.Zhang, Q.M., Furukawa, T., Bar-Cohen, Y., Scheinbeim, J., Eds., Electroactive Polymers (Mater. Res. Symp. Proc. 600, Warrendale, PA, 1999).Google Scholar
13.Bar-Cohen, Y., Ed., Electroactive Polymer (EAP) Actuators as Artificial Muscles—Reality, Potential and Challenges (SPIE Press, Bellingham, WA, 2004).CrossRefGoogle Scholar
14.Bar-Cohen, Y., Ed., Proc. SPIE 6168 (2006).Google Scholar
15.Liu, Y., Flood, A.H., Bonvallet, P.A., Vignon, S.A., Northrop, B.H., Tseng, H.R., Jeppesen, J.O., Huang, T.J., Brough, B., Baller, M., Magonov, S., Solares, S.D., Goddard, W.A., Ho, C.M., Stoddart, J.F., J. Am. Chem. Soc. 127, 9745 (2005).CrossRefGoogle Scholar
16.Kull, F.J., Sablin, E.P., Lau, R., Fletterick, R.J., Vale, R.D., Nature 380, 550 (1996).CrossRefGoogle Scholar
17.Howard, J., Nature 389, 561 (1997).CrossRefGoogle Scholar
18.Stoddart, J.F., personal communication (2006).Google Scholar
19.Tseng, H.R., Wu, D., Fang, N., Zhang, X., Stoddart, J.F., Chem. Phys. Chem. 5, 111 (2004).CrossRefGoogle Scholar
20.Petty, M.C., Langmuir–Blodgett Films: An Introduction (Cambridge University Press, Cambridge, U.K., 1996).CrossRefGoogle Scholar
21.Lee, I.C., Frank, C.W., Yamamoto, T., Tseng, H.R., Flood, A.H., Stoddart, J.F., Jeppesen, J.O., Langmuir 20, 5809 (2004).CrossRefGoogle ScholarPubMed
22.Steuerman, D.W., Tseng, H.R., Peters, A.J., Flood, A.H., Jappesen, J.O., Nielsen, K.A., Stoddart, J.F., Heath, J.R., Angew. Chem. Int. Ed. 43, 6486 (2004).CrossRefGoogle Scholar
23.Leigh, D.A., Morales, A.F., Pérez, E.M., Wong, J.K.Y., Saiz, C.G., Slawin, A.M.Z., Carmichael, A.J., Haddleton, A.M., Brouwer, A.M., Jan Burna, W., Wurpel, G.W.H., León, S., Zerbetto, F., Angew. Chem. Int. Ed. 44, 3062 (2005).CrossRefGoogle Scholar
24.Noji, H., Yasuda, R., Yoshida, M., Kinosita, K., Nature 386, 299 (1997).CrossRefGoogle Scholar
25.Vall, R.D., Milligan, R.A., Science 288, 88 (2000).CrossRefGoogle Scholar
26.Soong, R.K., Bachand, G.D., Neves, H.P., Olkhovets, A.G., Craighead, H.G., Montemagno, C.D., Science 290, 1555 (2000).CrossRefGoogle Scholar
27.Zasazinski, J.A., Viswanathan, R., Madsen, L., Garnaes, J., Schwartz, D.K., Science 263, 1344 (1994).Google Scholar
28.Collier, C.P., Wong, E.W., Belohradský, M., Raymo, F.M., Stoddart, J.F., Kuekes, P.J., Williams, R.S., Heath, J.R., Science 285, 391 (1999).CrossRefGoogle Scholar
29.Asakawa, M., Higuchi, M., Mattersteig, G., Nakamura, T., Pease, A.R., Raymo, F.M., Shimizu, T., Stoddart, J.F., Adv. Mater. 12, 1099 (2000).3.0.CO;2-2>CrossRefGoogle Scholar
30.Huang, T.J., Tseng, H.R., Sha, L., Lu, W., Brough, B., Flood, A.H., Yu, B.D., Celestre, P.C., Chang, J.P., Stoddart, J.F., Ho, C.M., Nano Lett. 4, 2065 (2004).CrossRefGoogle Scholar
31.Ulman, A., Characterization of Organic Thin Films (Butterworth-Heinemann, Boston, 1995).Google Scholar
32.Kull, F.J., Endow, S.A., Trends Biochem. Sci. 29, 103 (2004).CrossRefGoogle Scholar
33.Hackney, D.D., Annu. Rev. Physiol. 58, 731 (1996).CrossRefGoogle Scholar
34.Huang, T.J., Brough, B., Ho, C.M., Liu, Y., Flood, A.H., Bonvallet, P.A., Tseng, H.R., Stoddart, J.F., Baller, M., Magonov, S., Appl. Phys. Lett. 85, 5391 (2004).CrossRefGoogle Scholar
35.Huang, T.J., Flood, A.H., Brough, B., Liu, Y., Bonvallet, P.A., Kang, S., Chu, C.W., Guo, T.F., Lu, W.X., Yang, Y., Stoddart, J.F., Ho, C.M., IEEE Trans. Autom. Sci. Eng. 3, 254 (2006).CrossRefGoogle Scholar
36.Eelkema, R., Pollard, M.M., Vicario, J., Katsonis, N., Ramon, B.S., Bastiaansen, C.W.M., Broer, D.J., Feringa, B.L., Nature 440, 163 (2006).CrossRefGoogle Scholar
37.Berná, J., Leigh, D.A., Lubomska, M., Mendoza, S.M., Pérez, E.M., Rudolf, P., Teobaldi, G., Zerbetto, F., Nat. Mater. 4, 704 (2005).CrossRefGoogle Scholar