Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T03:40:30.390Z Has data issue: false hasContentIssue false

Recent advances in the theory of hydrogen storage in complex metal hydrides

Published online by Cambridge University Press:  07 June 2013

Kyle Jay Michel
Affiliation:
Department of Materials Science and Engineering, Northwestern University; [email protected]
Vidvuds Ozoliņš
Affiliation:
Department of Materials Science and Engineering, University of California–Los Angeles; [email protected]
Get access

Abstract

This article provides an overview of the key concepts and recent theoretical developments in computational modeling of complex metal hydrides with a focus on applications in hydrogen storage. Density functional theory based first-principles calculations have played an important role in understanding the structural and thermodynamic properties of these materials. Methods for predicting crystal structures and hydrogen positions in complex hydrides have been developed to complement experimental synthesis and characterization. Together with an efficient formalism for determining multinary phase diagrams under variable temperature and hydrogen pressure (the grand-canonical linear programming method), they constitute a complete first-principles framework for designing new hydrogen storage reactions. We also review the progress in modeling reaction kinetics in a prototypical complex hydride (i.e., a transition metal catalyzed sodium alanate [NaAlH4]). While many aspects of titanium-doped NaAlH4 remain hotly disputed, we discuss areas where satisfactory quantitative understanding has been achieved: diffusive metal mass transport, bulk substitution of Ti, and hydrogen dissociation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Schlapbach, L., Zuttel, A., Nature 424, 353 (2001).CrossRefGoogle Scholar
Bogdanovic, B., Schwickardi, M., J. Alloys Compd. 253, 1 (1997).CrossRefGoogle Scholar
Chen, P., Xiong, Z., Luo, J., Lin, J., Tan, K.L., Nature 420, 302 (2002).CrossRefGoogle Scholar
Luo, W., J. Alloys Compd. 381, 284 (2004).CrossRefGoogle Scholar
Curtarolo, S., Morgan, D., Persson, K., Rodgers, J., Ceder, G., Phys. Rev. Lett. 91, 135503 (2003).CrossRefGoogle Scholar
Oganov, A.R., Glass, C.W., J. Chem. Phys. 124, 244704 (2006).CrossRefGoogle Scholar
Trimarchi, G., Zunger, A., Phys. Rev. B 75, 104113 (2007).CrossRefGoogle Scholar
Wang, Y., Lv, J., Zhu, L., Ma, Y., Phys. Rev. B 82, 094116 (2010).CrossRefGoogle Scholar
Pannetier, J., Bassas-Alsina, J., Rodriguez-Carvajal, J., Caignaerte, V., Nature 346, 343 (1990).CrossRefGoogle Scholar
Pickard, C.J., Needs, R.J., J. Phys. Condens. Matter 23, 053201 (2011).CrossRefGoogle Scholar
Goedecker, S., J. Chem. Phys. 120, 9911 (2004).CrossRefGoogle Scholar
Belsky, A., Hellenbrandt, M., Karen, V.L., Luksch, P., Acta Crystallogr., Sect. B: Struct. Sci. 58, 364 (2002).CrossRefGoogle Scholar
Løvvik, O., Opalka, S.M., Brinks, H., Hauback, B., Phys. Rev. B 69, 134117 (2004).CrossRefGoogle Scholar
Løvvik, O., Phys. Rev. B 71, 144111 (2005).CrossRefGoogle Scholar
Majzoub, E.H., Ozolins, V., Phys. Rev. B 77, 104115 (2008).CrossRefGoogle Scholar
Ozolins, W., Majzoub, E.H., Wolverton, C., Phys. Rev. Lett. 100, 135501 (2008).CrossRefGoogle Scholar
Perdew, J.P., in Electronic Structure of Solids, Ziesche, P., Eschrig, H., Eds. (Akademie Verlag, Berlin, 1991), vol. 11.Google Scholar
Cerny, R., Filinchuk, Y., Hagemann, H., Yvon, K., Angew. Chem. Int. Ed. 46, 5765 (2007).CrossRefGoogle Scholar
Her, J.-H., Stephens, P.W., Gao, Y., Soloveichik, G.L., Rijssenbeek, J., Andrus, M., Zhao, J.C., Acta Crystallogr., Sect. B: Struct. Sci. 63, 561 (2007).CrossRefGoogle Scholar
Chlopek, K., Frommen, C., Leon, A., Zabara, O., Fichtner, M., J. Mater. Chem. 17, 3496 (2007).CrossRefGoogle Scholar
Filinchuk, Y., Cerny, R., Hagemann, H., Chem. Mater. 21, 925 (2009).CrossRefGoogle Scholar
Bil, A., Kolb, B., Atkinson, R., Pettifor, D.G., Thonhauser, T., Kolmogorov, A.N., Phys. Rev. B 83, 224103 (2011).CrossRefGoogle Scholar
Kim, C., Hwang, S.-J., Bowman, R.C., Reiter, J.W., Zan, J.A., Kulleck, J.G., Kabbour, H., Majzoub, E.H., Ozolins, V., J. Phys. Chem. C 113, 9956 (2009).CrossRefGoogle Scholar
Majzoub, E.H., Ronnebro, E., J. Phys. Chem. C 113, 3352 (2009).CrossRefGoogle Scholar
Zhang, Y., Majzoub, E., Ozolins, V., Wolverton, C., Phys. Rev. B 82, 174107 (2010).CrossRefGoogle Scholar
Majzoub, E.H., Zhou, F., Ozolins, V., J. Phys. Chem. C 115, 2636 (2011).CrossRefGoogle Scholar
Zhang, Y., Majzoub, E., Ozolins, V., Wolverton, C., J. Phys. Chem. C 116, 10522 (2012).CrossRefGoogle Scholar
Meredig, B., Wolverton, C., Nat. Mater. 12, 123 (2013).CrossRefGoogle Scholar
Oganov, A.R., Valle, M., J. Chem. Phys. 130, 104504 (2009).CrossRefGoogle Scholar
Dolci, F., Napolitano, E., Weidner, E., Enzo, S., Moretto, P., Brunelli, M., Hansen, T., Orlova, M., Fichtner, M., Lohstroh, W., Inorg. Chem. 50, 1116 (2011).CrossRefGoogle Scholar
Chase, M.W. Jr., Davies, C.A., Downey, J.R. Jr., Frurip, D.J., McDonald, R.A., Syverud, A.N., J. Phys. Chem. Ref. Data 14 (Suppl. 1), 1432 (1985).Google Scholar
Grimvall, G., Thermophysical Properties of Materials (Elsevier, North-Holland, Amsterdam, 1999).Google Scholar
Ozolins, V., Majzoub, E.H., Wolverton, C., J. Am. Chem. Soc. 131, 230 (2009).CrossRefGoogle Scholar
Wolverton, C., Siegel, D., Akbarzadeh, A., Ozolins, V., J. Phys. Condens. Matter 20, 064228 (2008).CrossRefGoogle Scholar
Ozolins, V., Majzoub, E., Udovic, T., J. Alloys Compd. 375, 1 (2004).CrossRefGoogle Scholar
Bogdanovic, B., Brand, R.A., Marjanovic, A., Schwickardi, M., Tolle, J., J. Alloys Compd. 302, 36 (2000).CrossRefGoogle Scholar
Gross, K., Thomas, G., Jensen, C., J. Alloys Compd. 330, 683 (2002).CrossRefGoogle Scholar
Akbarzadeh, A., Ozolins, V., Wolverton, C., Adv. Mater. 19, 3233 (2007).CrossRefGoogle Scholar
Akbarzadeh, A., Wolverton, C., Ozolins, V., Phys. Rev. B 79, 184102 (2009).CrossRefGoogle Scholar
Wolverton, C., Ozolins, V., Phys. Rev. B 75, 064101 (2007).CrossRefGoogle Scholar
Wolverton, C., Ozolins, V., Asta, M., Phys. Rev. B 69, 144109 (2004).CrossRefGoogle Scholar
Pozzo, M., Alfe, D., Phys. Rev. B 77, 104103 (2008).CrossRefGoogle Scholar
Wu, Z., Allendorf, M.D., Grossman, J.C., J. Am. Chem. Soc. 131, 13918 (2009).CrossRefGoogle Scholar
Wagner, L.K., Majzoub, E.H., Allendorf, M.D., Grossman, J.C., PhysChemChemPhys 14, 6611 (2012).Google Scholar
Reilly, J.J., Wiswall, R.H., Inorg. Chem. 6, 2220 (1967).CrossRefGoogle Scholar
Reilly, J.J., Wiswall, R.H., Inorg. Chem. 7, 2254 (1968).CrossRefGoogle Scholar
Vajo, J.J., Skeith, S.L., Mertens, F., J. Phys. Chem. B 109, 3719 (2005).CrossRefGoogle Scholar
Bosenberg, U., Doppiu, S., Mosegaard, L., Barkhordarian, G., Eigen, N., Gutfleisch, O., Klassen, T., Dornheim, M., Bormann, R., Acta Mater. 55, 3951 (2007).CrossRefGoogle Scholar
Alapati, S., Johnson, J., Sholl, D., J. Phys. Chem. B 110, 8769 (2006).CrossRefGoogle Scholar
Alapati, S., Johnson, J., Sholl, D., J. Phys. Chem. C 111, 1584 (2007).CrossRefGoogle Scholar
Alapati, S., Johnson, J., Sholl, D., PhysChemChemPhys 9, 1438 (2007).Google Scholar
Siegel, D., Wolverton, C., Ozolins, V., Phys. Rev. B 76, 134102 (2007).CrossRefGoogle Scholar
Kirklin, S., Meredig, B., Wolverton, C., Adv. Energy Mater. (2012), doi:10.1002/aenm.201200593.Google Scholar
Bowman, R.C., Fultz, B., MRS Bull. 27, 688 (2002).CrossRefGoogle Scholar
Bowman, R.C., Luo, C., Ahn, C.C., Witham, C.K., Fultz, B., J. Alloys Compd. 217, 185 (1995).CrossRefGoogle Scholar
Wagemans, R.W.P., van Lenthe, J.H., de Jongh, P.E., van Dillen, A.J.., de Jong, K.P., J. Am. Chem. Soc. 127, 16675 (2005).CrossRefGoogle Scholar
Balde, C.P., Hereijgers, B.P.C., Bitter, J.H., de Jong, K.P., J. Am. Chem. Soc. 130, 6761 (2008).CrossRefGoogle Scholar
Mueller, T., Ceder, G., ACS Nano 4, 5647 (2010).CrossRefGoogle Scholar
Bhakta, R.K., Maharrey, S., Stavila, V., Highley, A., Alam, T., Majzoub, E., Allendorf, M., PhysChemChemPhys 14, 8160 (2012).Google Scholar
Liu, X., Peaslee, D., Jost, C.Z., Baumann, T.F., Majzoub, E.H., Chem. Mater. 23, 1331 (2011).CrossRefGoogle Scholar
Sakintuna, B., Lamari-Darkrim, F., Hirscher, M., Int. J. Hydrogen Energy 32, 1121 (2007).CrossRefGoogle Scholar
Pinkerton, F.E., Meyer, M.S., J. Phys. Chem. C 113, 11172 (2009).CrossRefGoogle Scholar
Li, H.-W., Yan, Y., Orimo, S.-I., Züttel, A., Jensen, C.M., Energies 4, 185 (2011).CrossRefGoogle Scholar
Sandrock, G., Gross, K., Thomas, G., J. Alloys Compd. 339, 299 (2002).CrossRefGoogle Scholar
Michel, K.J., Ozolins, V., J. Phys. Chem. C 115, 21443 (2011).CrossRefGoogle Scholar
Michel, K.J., Ozolins, V., J. Phys. Chem. C 115, 21465 (2011).CrossRefGoogle Scholar
Van de Walle, C.G., Neugebauer, J., J. Appl. Phys. 95, 3851 (2004).CrossRefGoogle Scholar
Michel, K.J., Ozolins, V., J. Phys. Chem. C 115, 21454 (2011).CrossRefGoogle Scholar
Gunaydin, H., Houk, K.N., Ozolins, V., PNAS 105, 3673 (2008).CrossRefGoogle Scholar
Wilson-Short, G.B., Janotti, A., Hoang, K., Peles, A., Van de Walle, C.G., Phys. Rev. B 80, 224102 (2009).CrossRefGoogle Scholar
Luo, W., Gross, K.J., J. Alloys Compd. 385, 224 (2004).CrossRefGoogle Scholar
Sun, D., Kiyobayashi, T., Takeshita, H., Kuriyama, N., Jensen, C., J. Alloys Compd. 337, L8 (2002).CrossRefGoogle Scholar
Brinks, H.W., Jensen, C.M., Srinivasan, S.S., Hauback, B.C., Blanchard, D., Murphy, K., J. Alloys Compd. 376, 215 (2004).CrossRefGoogle Scholar
Orimo, S.-I., Nakamori, Y., Eliseo, J.R., Zuttel, A., Jensen, C.M., Chem. Rev. 107, 4111 (2007).CrossRefGoogle Scholar
Lovvik, O., Opalka, S., Phys. Rev. B 71, 054103 (2005).CrossRefGoogle Scholar
Lovvik, O., Opalka, S., Appl. Phys. Lett. 88, 161917 (2006).CrossRefGoogle Scholar
Peles, A., Van de Walle, C.G., Phys. Rev. B 76, 214101 (2007).CrossRefGoogle Scholar
Marashdeh, A., Versluis, J.-W.I., Valdés, Á., Olsen, R.A., Løvvik, O.M., Kroes, G.-J., J. Phys. Chem. C 117, 3 (2013).CrossRefGoogle Scholar
Bellosta von Colbe, J.M., Schmidt, W., Felderhoff, M., Bogdanović, B., Schüth, F., Angew. Chem. Int. Ed. 45, 3663 (2006).CrossRefGoogle Scholar
Lohstroh, W., Fichtner, M., Phys. Rev. B 75, 184106 (2007).CrossRefGoogle Scholar
Du, A.J., Smith, S.C., Lu, G.Q., Chem. Phys. Lett. 450, 80 (2007).CrossRefGoogle Scholar
Chen, J.-C., Juanes-Marcos, J.C., Al-Halabi, A., Olsen, R.A., Kroes, G.-J., J. Phys. Chem. C 113, 11027 (2009).CrossRefGoogle Scholar
Wang, Y., Zhang, F., Stumpf, R., Lin, P., Chou, M.Y., Phys. Rev. B 83, 195419 (2011).CrossRefGoogle Scholar
Graetz, J., Reilly, J.J., Johnson, J., Ignatov, A. Yu., Tyson, T.A., Appl. Phys. Lett. 85, 500 (2004).CrossRefGoogle Scholar
Stumpf, R., Bastasz, R., Whaley, J.A., Ellis, W.P., Phys. Rev. B 77, 235413 (2008).CrossRefGoogle Scholar
Kopczyk, M., Priyantha, W., Childs, N., Key, C., Lerch, M., Smith, R.J., Choi, D.S., Surf. Sci. 604, 988 (2010).CrossRefGoogle Scholar
Kim, S.K., Jona, F., Marcus, P.M., J. Phys. Condens. Matter 8, 25 (1996).CrossRefGoogle Scholar
Zhang, F., Wang, Y., Chou, M.Y., J. Phys. Chem. C 116, 18663 (2012).CrossRefGoogle Scholar
Sudik, A., Yang, J., Halliday, D., Wolverton, C., J. Phys. Chem. C 111, 6568 (2007).CrossRefGoogle Scholar