Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-30T19:07:26.690Z Has data issue: false hasContentIssue false

Quasicrystals Perspectives and Potential Applications

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

For decades scientists have accepted the premise that solid matter can only order in two ways: amorphous (or glassy) like window glass or crystalline with atoms arranged according to translational symmetry. The science of crystallography, now two centuries old, was able to relate in a simple and efficient way all atomic positions within a crystal to a frame of reference in which a single unit cell was defined. Positions within the crystal could all be deduced from the restricted number of positions in the unit cell by translations along vectors formed by a combination of integer numbers of unit vectors of the reference frame. Of course disorder, which is always present in solids, could be understood as some form of disturbance with respect to this rule of construction. Also amorphous solids were naturally referred to as a full breakdown of translational symmetry yet preserving most of the short-range order around atoms. Incommensurate structures, or more simply modulated crystals, could be understood as the overlap of various ordering potentials not necessarily with commensurate periodicities.

For so many years, no exception to the canonical rule of crystallography was discovered. Any crystal could be completely described using one unit cell and its set of three basis vectors. In 1848 the French crystallographer Bravais demonstrated that only 14 different ways of arranging atoms exist in three-dimensional space according to translational symmetry. This led to the well-known cubic, hexagonal, tetragonal, and associated structures. Furthermore the dihedral angle between pairs of faces of the unit cell cannot assume just any number since an integer number of unit cells must completely fill space around an edge.

Type
Quasicrystals
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Shechtman, D., Blech, I., Gratias, D., and Cahn, J.W., Phys. Rev. Lett. 53 (1984) p. 1951.CrossRefGoogle Scholar
2.Chattopadhyay, K., Ranganathan, S., Subbanna, G.N., and Thangaraj, N., Scripta Metall. 19 (1985) p. 767.CrossRefGoogle Scholar
3.Bendersky, L., Phys. Rev. Lett. 55 (1985) p. 1461.CrossRefGoogle Scholar
4.Ishimasa, T., Nissen, H.U., and Fukano, Y., Phys. Rev. Lett. (1985) p. 511.CrossRefGoogle Scholar
5.Wang, N., Chen, H., and Kuo, K.H., Phys. Rev. Lett. 59 (1987) p. 1010.CrossRefGoogle Scholar
6.Pannetier, J., Dubois, J.M., Janot, C., and Bildé, A., Philos. Mag. B55 (4) (1987) p. 435.CrossRefGoogle Scholar
7.Dubost, B., Lang, J.M., Tanaka, M., Sainfort, P., and Audier, M., Nature 234 (1986) p. 48.CrossRefGoogle Scholar
8.Tsai, A.P., Inoue, A., and Masumoto, T., Jpn. J. Appl. Phys. 26 (1987) p. L1505.CrossRefGoogle Scholar
9.Tsai, A.P., Inoue, A., and Masumoto, T., Mater. Trans. JIM 30 (1989) p. 463.CrossRefGoogle Scholar
10.He, L.X., Wu, Y.K., and Kuo, K.H., J. Mater. Sci.Lett. 7 (1988) p. 1284.CrossRefGoogle Scholar
11.Tsai, A.P., Inoue, A., and Yokoyama, Y., Philos. Mag. Lett. 61 (1) (1990) p. 9.CrossRefGoogle Scholar
12.Zhang, X., Stroud, R.M., Libbert, J.L., and Kelton, K.F., Philos. Mag. B70 (4) (1994) p. 927.CrossRefGoogle Scholar
13.Pierce, F.S., Guo, Q., and Poon, S.J., Phys. Rev. Lett. 73 (1994) p. 2220.CrossRefGoogle Scholar
14.Luo, Z.P., Zhang, S.Q., Tang, Y., and Zhao, D.S., Scripta Metall. 28 (1993) p. 1513.CrossRefGoogle Scholar
15.Sidhom, H. and Portier, R., Philos. Mag. Lett. 59 (3) (1989) p. 131.CrossRefGoogle Scholar
16.Pauling, L., Phys. Rev. Lett. 58 (1987) p. 365.Google Scholar
17.Janot, C., Quasicrystals: A Primer, 2nd ed. (Oxford University Press, Cambridge, 1994).Google Scholar
18.Dubois, J.M. and Weinland, P., French Patent No. 2,635,117 (April 30, 1993) and U.S. Patent No. 5,204,191 (January 6,1992).Google Scholar
19.Shield, J.E., Goldman, A.I., Anderson, I.E., Ellis, T.E., McCallum, R.W., and Sordelet, D.J., U.S. Patent No. 5,433,978 (July 19,1995).Google Scholar
20.Dubois, J.M., Phys. Scripta T49 (1993) p. 17.CrossRefGoogle Scholar
21.Goldman, A.I., Sordelet, D.J., Thiel, P.A., and Dubois, J.M., eds., New Horizons in Quasicrystals: Research and Applications (World Scientific, Singapore, 1997).CrossRefGoogle Scholar
22.Belin-Ferre, E. and Dubois, J.M., J. Phys. Cond. Matter 8 (1996) p. L717.CrossRefGoogle Scholar
23.Janot, C. and de Boissieu, M., Phys. Rev. Lett. 72 (1994) p. 1674.CrossRefGoogle Scholar
24.Janot, C., Phys. Rev. B 53 (1996) p. 181.CrossRefGoogle Scholar
25.Janot, C., J. Phys. Cond. Matter 9 (1997) p. 1493.CrossRefGoogle Scholar
26.Berger, C., in Lectures on Quasicrystals, edited by Hippert, F. and Gratias, D. (Les Editions de Physique, Les Ullis, 1994) p. 463.Google Scholar
27.Poon, S.J., Adv. Phys. 41 (1992) p. 203.CrossRefGoogle Scholar
28.Dubois, J.M., Kang, S.S., Archambault, P., and Colleret, B., J. Mater. Res. 8 (1) (1993) p. 38.CrossRefGoogle Scholar
29.Ebert, P., Feuerbacher, M., Tamura, N., Wollgarten, M., and Urban, K., Phys. Rev. Lett. 77 (1996) p. 3287.Google Scholar
30.Chang, S.L., Anderegg, J.W., and Thiel, P.A., J. Non-Cryst. Solids 195 (1996) p. 95.CrossRefGoogle Scholar
31.Dubois, J.M., Plaindoux, P., Belin-Ferré, E., Tamura, N., and Sordelet, D.J., in Proc. ICQ6, edited by Fujiwara, T. and Takeuchi, S. (World Scientific) in press.Google Scholar
32.Bresson, L., in Lectures on Quasicrystals, edited by Hippert, F. and Gratias, D. (Les Editions de Physique, Les Ullis, 1994) p. 549.Google Scholar
33.Rivier, N., in New Horizons in Quasicrystals: Research and Applications, edited by Goldman, A.I., Sordelet, D.J., Thiel, P.A., and Dubois, J.M. (World Scientific, Singapore, 1997) p. 188.Google Scholar
34.Eisenhammer, T., New Horizons in Quasicrystals: Research and Applications p. 304.Google Scholar
35.Dubois, J.M., Proner, A., Bucaille, B., Cathonnet, P., Dong, C., Richard, V., Pianelli, A., Massiani, Y., Yaazza, S. Ait, and Belin-Ferré, E., Annalcs de Chimie 19 (1994) p. 3.Google Scholar
36.Kang, S.S., Dubois, J.M., and von Stebut, J., J. Mater. Res. 8 (10) (1993) p. 2471.CrossRefGoogle Scholar
37.Shield, J.E., Kramer, M.J., and McCallum, R.W., J. Mater. Res. 8 (6) (1993) p. 1199.CrossRefGoogle Scholar
38.Sordelet, D.J., in Quasicrystals, edited by Janot, C. and Mosseri, R. (World Scientific, 1996) p. 778.Google Scholar
39.Tsai, A.P., Aoki, K., Inoue, A., and Masumoto, T., J. Mater. Res. 8 (1) (1993) p. 5.CrossRefGoogle Scholar
40.Inoue, A., in New Horizons in Quasicrystals: Research and Applications, edited by Goldman, A.I., Sordelet, D.J., Thiel, P.A., and Dubois, J.M. (World Scientific, Singapore, 1997) p. 256.Google Scholar
41.Liu, P., Stigenberg, H., and Nilsson, J.O., Acta Metall. Mater. 3 (7) (1995) p. 2881.CrossRefGoogle Scholar
42.Masumoto, T., Inoue, A., and Yamaguchi, T., European Patent No. 06454642A2 (1994).Google Scholar
43.Sordelet, D.J., Kramer, M.J., and Unal, O., J. Thermal Spray Tech. 4 (3) (1995) p. 235.CrossRefGoogle Scholar
44.Sordelet, D.J., Besser, M.F., and Anderson, I.E., J. Thermal Spray Tech. 5 (2) (1996) p. 161.CrossRefGoogle Scholar
45.Sordelet, D.J., Bloomer, T.A., Kramer, M.J., and Unal, O., J. Mater. Sci. Lett. 15 (1996) p. 935.CrossRefGoogle Scholar